Evolutie en Biodiversiteit

Maand: februari 2015

Ongrijpbare hap

Hoe een jagende vleermuis (g)een Amerikaanse maanvlinder vangt

Hongerige vleermuizen zijn behendige jagers, maar ze hebben moeite om een maanvlinder te vangen. Jesse Barber en collega’s laten zien waarom vleermuizen zo vaak mis grijpen bij deze grote mot.

Vleermuizen, die in de schemering actief zijn, jagen niet op zicht, maar op gehoor. Ze brengen regelmatig hoge piepgeluidjes uit en de weerkaatsing daarvan geeft ze een beeld van de omgeving: waar staat een boom – en waar vliegt een lekker hapje. Een fladderende mot plukken ze zo feilloos uit de lucht.

Tenzij het een Amerikaanse maanvlinder is. Die wekt namelijk een vals beeld op.

De Amerikaanse maanvlinder, een grote nachtvlinder die leeft in het Oosten van Noord-Amerika, heeft achtervleugels met lange staarten. Die staarten, schrijven Jesse Barber en collega’s, brengen vleermuizen in verwarring.

Wapperende vleugelstaarten

Barber liet grote bruine vleermuizen (zo heten ze echt; de wetenschappelijke naam is Eptesicus fuscus) in het donker jagen op vliegende maanvlinders. Van sommige vlinders had hij de vleugelstaarten afgeknipt. Met een hoge snelheid infraroodcamera en ultrasone microfoons volgde hij hoe de jacht verliep.
De exemplaren zonder vleugelstaarten vlogen even goed als intacte motten. Toch hadden ze veel minder kans tegen de vleermuizen: ze werden vaker gevangen. Een maanvlinder met ongeschonden staarten kon vaak ontsnappen doordat de vleermuizen nogal eens op de staarten mikten. Dan kregen ze zo’n mot zelden te pakken.
De wapperende vleugelstaarten van een vliegende maanvlinder misleiden vleermuizen, is de conclusie. In het geluidsbeeld dat een vleermuis krijgt, trekken de staarten van zo’n vlinder meer aandacht dan het lijf en de vleermuis grijpt mis. Zo ontkomt de vlinder, al zal hij misschien een stukje vleugel missen.

Stamboom

De Amerikaanse maanvlinder hoort tot de familie nachtpauwogen. De onderzoekers stelden een stamboom op van deze familie en gaven daarop motten met lange vleugelstaarten aan. Die zijn op vier plaatsen te vinden, waaruit blijkt dat deze verdedigingsstrategie in deze familie vier keer is ontstaan.
Ook in andere nachtvlinderfamilies zijn er soorten met vleugelstaarten. Ook dat zou best een verdediging tegen vleermuizen kunnen zijn.

Willy van Strien

Foto’s:
Boven: Lynette (Creative Commons)
Midden: Geena Hill / Kawahara Lab / University of Florida

Bron:
Barber, J.R., B.C. Leavell, A.L. Keener, J.W. Breinholt, B.A. Chadwell, C.J.W. McClure, G.M. Hill & A.Y. Kawahara, 2015. Moth tails divert bat attack: evolution of acoustic deflection. PNAS, 17 februari online. Doi:10.1073/pnas.1421926112

Plantaardige beestjes

Leven groene zeenaaktslakken op zonne-energie, of niet?

Groene zeenaaktslakken nemen bladgroenkorrels op uit algen en houden die vast. De bladgroenkorrels vangen vervolgens zonlicht in en leggen koolstofdioxide vast, net zoals ze in de algen deden. Dankzij die gestolen bladgroenkorrels kunnen de dieren een lange tijd zonder voedsel. Het idee was dat ze op zonne-energie leven. Maar dat doen ze niet, denken Jan de Vries en collega’s.

Van bovenaf gezien hebben de groene zeenaaktslakken Elysia chlorotica en Elysia timida (en nog vijf soorten) veel weg van een blaadje. Dat is geen toeval, want de dieren zitten vol bladgroenkorrels die zonlicht invangen en koolstofdioxide vastleggen en verwerken tot koolhydraten en vetten. De beestjes leven als planten, was het idee; ze doen aan fotosynthese. Dankzij deze fotosynthese kunnen ze maanden zonder voedsel leven op zonne-energie; de kampioen, Elysia chlorotica, houdt dat zelfs zijn hele leven vol, bijna een jaar.

Gestolen

De bladgroenkorrels hebben ze niet van zichzelf. Het zijn gestolen celorgaantjes. De zeenaaktslakken zuigen ze op uit algen waarvan ze eten en huisvesten ze in speciale cellen langs hun wijdvertakte darmstelsel. Omdat de dieren plat zijn, liggen de bladgroenkorrels daar vlak onder de oppervlakte. Bladgroenkorrelleverancier voor Elysia chlorotica (die leeft in zoutwatermoerassen aan de oostkust van Noord-Amerika) is de alg Vaucheria litorea. Elysia timida (mediterraan gebied, Canarische eilanden) ontleent ze aan de alg Acetabularia acetabulum.

Maar het verhaal is omgeven met raadsels.

Zonder eten

Zo blijkt het twijfelachtig of de zeenaaktslakken de fotosynthese eigenlijk wel nodig hebben, zoals gedacht werd. Oftewel: leven ze werkelijk op zonne-energie? Gregor Christa en collega’s kwamen op het idee om dat uit te proberen met Elysia timida en Plakobrancus ocellatus, ook een groene zeenaaktslak die lang kan overleven zonder voedsel.
De dieren houden het inderdaad een lange periode vol zonder iets te eten. Maar tot verrassing van de onderzoekers lukt ze dat in het donker even goed als in het licht. Het lijkt alsof de fotosynthese er niet toe doet; die verbetert de overleving namelijk niet.

Voorraad

Toch hebben de dieren de bladgroenkorrels nodig om te overleven. Wat hebben ze er aan? Misschien gebruiken ze de korrels simpelweg als voedselvoorraad waar ze lang op kunnen teren: de korrels zitten vol met eiwitten, vetten en koolhydraten. De zeenaaktslakken moeten die voedselvoorraad goed houden, maar dat de bladgroenkorrels daarbij fotosynthetisch actief blijven, is bijzaak. De naaktslakken hebben de korrels zelf nodig, niet hun producten. Met andere woorden: de dieren leven misschien niet op zonne-energie.

Nu hebben Jan de Vries en collega’s de reactie van Elysia timida op uithongering vergeleken met die van Elysia cornigera, een soort uit het Caribische gebied. Beide soorten halen bladgroenkorrels uit dezelfde alg, Acetabularia. Elysia timida kan met die bladgroenkorrels maanden zonder voedsel overleven, Elysia cornigera sterft met diezelfde korrels binnen twee weken. Dat blijkt niet te liggen aan de activiteit van de bladgroenkorrels. In beide soorten gaan die langzaam slechter presteren, maar Elysia cornigera sterft al voordat zijn bladgroenkorrels helemaal ophouden met fotosynthese.

Elysia timida blijkt simpelweg beter toegerust te zijn om een magere periode te kunnen overbruggen, is de conclusie. Dat moet ook wel, want hij leeft in een gebied waar gedurende een tijd van het jaar geen voedsel te vinden is.

Onderhoud

Een ander raadsel is hoe de bladgroenkorrels in de zeenaaktslakken fotosynthetisch actief kunnen blijven. Bij fotosynthese zijn namelijk een paar duizend eiwitten betrokken die dagelijks gerepareerd of vervangen moeten worden. Er zijn een paar duizend genen die voor deze eiwitten coderen en die moeten dus aanwezig zijn. De groene zeenaaktslakken lijken echter niet over die genen te beschikken. De bladgroenkorrels zelf hebben wat eigen erfelijk materiaal, maar dat bevat slechts 10 procent van die onderhoudsgenen, een paar honderd.

In de algen kunnen de bladgroenkorrels functioneren omdat de algen de overige onderhoudsgenen bezitten in hun celkernen. Maar de zeenaaktslakken nemen de celkernen van de algen niet op.

Het lijkt erop dat de dieren wel een deel van de onderhoudsgenen op de een of andere manier uit het erfelijk materiaal (dna) van de algen hebben gekopieerd en ingebouwd in hun eigen dna. Jonge zeenaaktslakken erven die genen van hun ouders. Drie jaar geleden meldde Sidney Pierce dat ruim zestig algengenen in Elysia chlorotica actief zijn, naast de genen van de gestolen bladgroenkorrels zelf.

Maar ook dan ontbreken er nog steeds een slordige duizend onderhoudsgenen. Het is dus wonderlijk dat groene zeenaaktslakken hun bladgroenkorrels maandenlang aan de praat kunnen houden.

Bladgroenkorrels verzamelen

Hoe dan ook: de groene zeenaaktslakken hebben gezonde bladgroenkorrels nodig. Karen Pelletreau beschreef in 2012 hoe jonge zeenaaktslakjes (Elysia chlorotica) ze verzamelen. Ze kweekte de dieren bij een regime van 12 uur licht, 12 uur donker.

De naaktslakjes beginnen met niks, want de eitjes zijn vrij van bladgroenkorrels; uit de eitjes komen larven en die nemen geen bladgroenkorrels op. Pas na metamorfose verschijnen kleine zeenaaktslakken in hun uiteindelijke gedaante – en uit labwaarnemingen bleek dat zij meteen bladgroenkorrels uit hun voedsel, de alg Vaucheria litorea, gaan halen.

Vormeloos

Ze moeten daar minstens een week mee doorgaan wil het werken. Als de onderzoekers de algen weghaalden voordat de dieren zes dagen oud waren, redden die het niet. Ze krompen, werden vormeloos en verloren de bladgroenkorrels die ze al hadden opgenomen. Kregen de jongen minimaal zes dagen algen, dan konden ze daarna een periode zonder voedsel doorstaan. Ze groeiden dan nauwelijks, maar ze behielden hun bladgroenkorrels, ontwikkelden zich normaal en hervatten de groei zo gauw er weer algen waren.
Er is kennelijk eerst een periode waarin de verzamelde bladgroenkorrels tijdelijk worden opgeslagen. Pas na een week blijven ze permanent aanwezig.

Willy van Strien
Dit stuk is een bewerking en uitbreiding van twee artikelen die ik schreef voor Bionieuws.

Foto’s:
Groot: Elysia timida. Parent Géry (Wikimedia Commons)
Klein, midden: Acetabularia acetabulum. Isabel Rubio (Creative Commons)
Klein, onder: Elysia chlorotica. Patrick Krug (Creative Commons)

Bronnen:
Vries, J. de, C. Woehle, G. Christa, H. Wägele, A.G.M. Tielens, P. Jahns & S.B. Gould, 2015. Comparison of sister species identifies factors underpinning plastid compatibility in green sea slugs. Proc. R. Soc. B 282: 20142519, 4 februari online. Doi: 10.1098/rspb.2014.2519
Christa, G., V. Zimorski, C. Woehle, A.G.M. Tielens, H. Wägele, W.F. Martin & S.B. Gould, 2014. Plastid-bearing sea slugs fix CO2 in the light but do not require photosynthesis to survive. Proc. R. Soc. B 281: 20132493. Doi: 10.1098/rspb.2013.2493
Pierce, S.K., X. Fang, J.A. Schwartz, X. Jiang, W. Zhao, N.E. Curtis, K.M. Kocot, B. Yang & J, Wang, 2012. Transcriptomic evidence for the expression of horizontally transferred algal nuclear genes in the photosynthetic sea slug, Elysia chlorotica. Molecular Biology and Evolution 29: 1545–1556. Doi: 10.1093/molbev/msr316
Pelletreau, K.N., J.M. Worful, K.E. Sarver & M.E. Rumpho, 2012. Laboratory culturing of Elysia chlorotica reveals a shift from transient to permanent kleptoplasty. Symbiosis 58: 221-232. Doi: 10.1007/s13199-012-0192-0

Beurtelings op kop

Ibis is bereid voorop te vliegen vanwege directe vergoeding

Een dier doet niet zomaar iets voor een ander. Het moet hem zelf ook een voordeeltje opleveren. Als een heremietibis op trekvlucht een ander op sleeptouw neemt, wordt die dienst onmiddellijk vergoed met een even grote wederdienst, laten Bernhard Voelkl en collega’s zien. Daar doet hij het voor.

Achter een vliegende vogel ontstaat aan weerszijden een opwaartse luchtstroom. Als een andere vogel dat ‘kielzog’ opzoekt, reist hij makkelijker. Geen wonder dat vogels graag schuin achter elkaar vliegen. Maar de voorste vogel levert de volle inspanning. Waarom is een vogel zo gek om op kop te gaan als hij ook achter een ander kan hangen? Voor de heremietibis (andere naam: kaalkopibis) losten Bernhard Voelkl en collega’s het raadsel op.

Paramotor

De onderzoekers volgden veertien jonge heremietibissen op hun najaarstrek. De vogels waren door dierverzorgers grootgebracht in de dierentuin van Salzburg (Oostenrijk) als onderdeel van een herintroductieprogramma. De soort is namelijk verdwenen uit Midden- en Zuid-Europa, waar hij vroeger wel voorkwam. Het was de bedoeling dat de jonge vogels in het najaar naar Italië zouden trekken om daar te overwinteren, maar ze deden dat niet uit zichzelf. Daarom werden ze getraind om met een paramotor mee te vliegen die hen vervolgens naar het zuiden begeleidde. Dat lukte; de ibissen volgden het kleurrijke toestel op afstand.
De onderzoekers grepen deze gelegenheid aan om te bestuderen hoe vogels op trek zich gedragen. Ze rustten de vogels in het begin van de reis gedurende een uur uit met een gps datalogger en konden achteraf precies zien welke plaats elke vogel in dat uur in de groep had ingenomen.

De vogels vlogen niet in de strakke V-formatie die je ziet bij grotere vogels zoals ganzen. Kleine vogels vormen zo’n formatie nooit; waarschijnlijk wekken zij onvoldoende luchtstroom op om er iets aan te hebben. Ibissen zijn middelgroot en misschien daarom niet sterk geneigd om een mooie V te vormen. Hoe dan ook: de onderzochte groep vloog in een los verband met een steeds wisselend patroon waarin hooguit soms een slordige V te herkennen was.

Gelijke munt

Uit eerder onderzoek wisten de biologen dat een heremietibis kan profiteren van de opwaartse luchtstroom schuin achter zijn voorganger, en tot op welke afstand. Toen ze keken hoeveel vogels binnen die afstand bij elkaar vlogen, zagen ze dat de meeste vogels in duo’s reizen; soms gaan drie of vier vogels samen op, zelden vliegen er meer dan vier in elkaars kielzog.

Twee ibissen die als koppel vliegen – de een voorop en de ander schuin achter hem klevend – wisselen een paar keer per minuut van positie. De voorste gaat dan nog op volle snelheid; hij zakt dus niet naar achter af omdat hij vermoeid raakt. Frappant is nu wat bij zo’n wissel gebeurt: de vogel die voorop ging wordt onmiddellijk en met gelijke munt terugbetaald. Heeft hij 20 seconden geleid, dan mag hij vervolgens 20 seconden volgen. De tijd wordt precies verrekend, ook als een van de twee groter en sterker is dan de ander.

Besparing

Een vogel die een ander op sleeptouw neemt heeft dus de zekerheid dat hij meteen daarna even lang met hem mag meeliften. Dat is volgens Voelkl de sleutel tot zijn bereidheid om een tijdje voorop te gaan. Doordat het tweetal veelvuldig van plaats wisselt, zit die goedmaker er altijd in.
De samenwerking in paren pakt goed uit. Voorop vliegen is niet zwaarder dan alleen vliegen, terwijl meeliften minder inspannend is. Al met al besparen vogels met een maatje dus energie ten opzichte van vogels die alleen reizen. En dat is belangrijk, want de trek vergt een enorme inspanning die veel jonge vogels niet overleven.

Maar nu weten we nog niet hoe het zit met de V-formaties van grote groepen ganzen die allemaal in elkaars kielzog vliegen. De vogels wisselen regelmatig van positie en de vraag is wie zich een poosje extra wil inspannen. De tijd die een vogel voorop vliegt is in zo’n grote groep niet zo makkelijk te verrekenen als in een tweetal.
Het is duidelijk dat de groep als geheel profiteert van de kopvlieger, inclusief hijzelf. Maar dat neemt niet weg dat hij de rekening betaalt. Aangezien elke vogel energie bespaart als hij voortdurend in een van de twee staarten blijft, zal niemand graag op kop gaan. Hier missen we nog iets.

De heremietibis leeft in Marokko, Turkije en Irak, maar zijn voortbestaan daar wordt ernstig bedreigd.

Willy van Strien

Foto’s:
Markus Unsöld

Bron:
Voelkl, B., S.J. Portugal, M. Unsöld, J.R. Usherwood, A.M. Wilson & J. Fritz, 2015. Matching times of leading and following suggest cooperation through direct reciprocity during V-formation flight in ibis. PNAS, 2 februari online. Doi: 10.1073/pnas.1413589112 

Roofslak spuit insuline

Visjes worden sloom en een monsterlijk net sluit zich om hen heen

De roofslak Conus geographus laat een gifcocktail op visjes los waarvan ze inactief en gedesoriënteerd raken. Zo vangt hij ze in zijn enorm rekbare valse mond. Helena Safavi-Hemami en collega’s schrijven hoe insuline, een bestanddeel van het gifmengsel, de bloedsuikerspiegel van de visjes doet kelderen.

Als slak moet Conus geographus het natuurlijk niet van z’n snelheid hebben. Toch staan watervlugge visjes op zijn menu. Die krijgt hij alleen te pakken doordat hij een kalmerend gifmengsel in het water spuit. Conus geographus is een roofslak uit ondiepe zeeën langs de oostkust van Afrika en rond de eilanden van Oceanië in de Grote Oceaan. Zijn schelp wordt zo’n 15 centimeter lang. De visjes raken gedesoriënteerd van het mengsel en bewegen nauwelijks meer.
Dan stulpt de roofslak een enorme trechter uit, vouwt die om een of meerdere slome visjes heen en sluit het net. Het ziet er monsterlijk uit, echt iets voor een enge film. De slak spuit de visjes met een holle gifnaald in zijn wanstaltige ‘valse mond’ nog verder plat. De prooi wordt voorverteerd en na een paar uur spuugt de roofslak de schubben en botjes uit. De rest gaat door naar zijn darmstelsel.

Nirwana

Het gifmengsel dat de prooidieren rustig maakt, bestaat uit tientallen stofjes. Onderzoekers noemen het mengsel ‘nirwana’-cocktail, naar de verlichte staat van zijn uit het boeddhisme die zich kenmerkt door gelijkmoedigheid.

Hao Hu ontdekte enkele jaren geleden tot zijn verrassing dat de nirwana-cocktail ook insuline bevat, maar wist niet precies wat hij daarvan moest denken. Nu schrijven Helena Safavi-Hemami en collega’s dat de insuline bijdraagt aan de kalmerende werking van het gifmengsel. Het is voor het eerst dat insuline als aanvalswapen blijkt te worden ingezet. Dat is ongebruikelijk, en misschien zelfs uniek.

Insuline is een hormoon dat bij alle gewervelde dieren voorkomt en het bloedsuikergehalte verlaagt. Mensen die suikerziekte hebben kunnen insuline spuiten als hun bloedsuikerspiegel hoog is. Vissen hebben een eigen, iets andere insuline-variant.
Safavi-Hemami laat zien dat het insuline uit het gifmengsel van Conus geographus zeer sterk lijkt op visseninsuline. En daardoor heeft het een groot effect op de prooidieren. Zij nemen het via hun kieuwen op en vervolgens daalt hun bloedsuikerspiegel. Mensen met suikerziekte kennen zo’n lage bloedsuikerspiegel als een ‘hypo’. De visjes verliezen er hun activiteit door.

Harpoen

Er is nog een Conus-soort die op vissen jaagt door zijn valse mond als vangnet te gebruiken: Conus tulipa, een nauwe verwant van Conus geographus. Ook tulipa schakelt zijn prooi uit met een desoriënterende en inactiverende nirwana-cocktail, en ook daar zit insuline in dat sterk op visseninsuline lijkt.
Andere visetende Conus-soorten pakken het anders aan. Zij steken hun slachtoffers met de holle gifnaald, die ze als een harpoen gebruiken, voordat ze hen insluiten. Zij dienen daarbij een gifmengsel toe met een andere werking: het verlamt de vissen doordat het hun spieren doet verkrampen. In deze cocktail zit geen visseninsuline.

Schelpdieren

Tenslotte zijn er Conus-soorten die op schelpdieren of wormen jagen; ook bij hen ontbreekt visseninsuline aan het gifmengsel waarmee ze hun prooi overmeesteren. Maar er zit wel een insulinevariant in die bij schelpdieren voorkomt en die hen wellicht helpt om hun prooi te pakken te krijgen.
Het gifmengsel dat Conus-soorten gebruiken om prooien te vangen blijkt dus precies toegesneden te zijn op het type prooi dat ze pakken en, voor viseters, op de manier waarop ze de slachtoffers vangen.

Nog een gif

Behalve de gifcocktail waarmee ze hun prooi uitschakelen, hebben Conus-soorten nog een pittig mengsel paraat. Daarmee verdedigen ze zich tegen hun eigen vijanden zoals vissen en inktvissen. Dit verdedigingsmengsel heeft een nog veel complexere samenstelling dan het aanvalsmengsel en het heeft een spierverslappende, verlammende werking op allerlei dieren. Conus geographus is de giftigste soort en zijn verdedigingssteek is voor mensen levensgevaarlijk.
Vorig jaar lieten Sébastien Dutertre en collega’s zien dat Conus geographus razendsnel kan schakelen tussen het gebruik van zijn kalmerende aanvalsgif en verlammende verdedigingsgif. Beide mengsels zijn het product van een langgerekte gifklier die uitkomt in de holle naald, maar de productieplaatsen zijn gescheiden. Het aanvalsmengsel wordt gemaakt aan het uiteinde van die lange klier, het verdedigingsmengsel verder naar achter.

Willy van Strien

Foto’s: Baldomero M. Olivera
Groot: Conus geographus reikt met zijn valse mond naar een visje
Klein: schelp van Conus geographus

Zie hoe Conus geographus een vis probeert te vangen. En hier is Conus tulipa, die erin slaagt.

Bronnen:
Safavi-Hemami, H., J. Gajewiak, S. Karanth, S.D. Robinson, B. Ueberheide, A.D. Douglass, A. Schlegel, J.S. Imperial, M. Watkins, P.K. Bandyopadhyay, M. Yandell, Q. Li, A.W. Purcell, R.S. Norton, L. Ellgaard & B.M. Olivera, 2015. Specialized insulin is used for chemical warfare by fish-hunting cone snails. PNAS, 20 januari online. Doi: 10.1073/pnas.1423857112
Dutertre, S., A-H. Jin, I. Vetter, B. Hamilton, K. Sunagar, V. Lavergne, V. Dutertre, B.G. Fry, A. Antunes, D.J. Venter, P.F. Alewood & R.J. Lewis, 2014. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nature Communications 5: 3521. Doi:10.1038/ncomms4521
Hu, H., P.K. Bandyopadhyay, B.M. Olivera & M. Yandell, 2012. Elucidation of the molecular envenomation strategy of the cone snail Conus geographus through transcriptome sequencing of its venom duct. BMC Genomics 13:284. Doi:10.1186/1471-2164-13-284

© 2024 Het was zo eenvoudig begonnen

Thema gemaakt door Anders NorenBoven ↑