Evolution and Biodiversity

Month: December 2016

Prepared to have a meal

Even a sedentary antlion has a capacity for learning

Antlion larva builds a pitfall

All that an antlion larva has to do once he has made his pitfall, is sit there and wait for a prey to come. Over the weeks, he learns to anticipate the arrival of a prey, Karen Hollis discovered.

Antlion larvae need a lot of food, consisting of little critters. They don’t go after their prey, but they take what comes along. While some species wait in ambush for their food, others build traps: a larva of such a species digs a funnel-shaped pit with steep walls in loose sandy soil and buries itself at the vertex, only head and jaws remaining visible. Tiny animals that wander along the edge lose their footing and tumble into the pit, from which it is difficult to escape. And when a nearby prey fails to fall in, the antlion larva tosses sand to him, so that the victim is disoriented, stumbles and comes down in a sand avalanche.

Vibrational signal

Once an antlion has dug his pit – which is a big job -, he only needs to wait until a prey is trapped. That’s all, and yet such a buried larva is learning something, as Karen Hollis reports.

adult antlion is a winged insectWorldwide, there are a few thousand species of antlions, many of them with larvae that dig a pit on a sheltered place, for instance under overhanging branches. Ants are a common prey. Adult antlions are graceful, winged insects.

Hollis and colleagues show that larvae learn to perceive when a prey is approaching. They brought a number of larvae into the laboratory and housed each of them in its own sand-filled plastic bowl. Half of the larvae received a prey item each day at a randomly determined time, always a few seconds after the researchers had dropped some sand grains beside their pits. This was an imitation of the natural situation: an animal that approaches a pit, causes a similar vibrational signal. The other half were presented with a daily prey item at the same time as the first group, but received a vibrational cue at a different, randomly selected time. The larvae were treated as described until they pupated.

Prepared

If a victim falls into the pit, an antlion larva will pick it up, drag it under the sand, bite and deliver an immobilizing poison and digestive enzymes. He then sucks the liquefied prey contents and throws the empty exoskeleton out. If it is necessary, he will repair his trap.

Antlions that used to get their prey each day after a vibrational cue, began to prepare themselves after receiving this cue, the experiments revealed. They responded faster than the untrained larvae when a prey arrived and extracted the contents of the prey at a higher rate and more efficiently, probably because they started to produce digestive enzymes earlier. Apparently, they had learned to associate the vibrational cue with the gain of a prey, in contrast to the other group.

Other researchers, Karolina Kuszewska and colleagues, reported that antlion larvae can learn to distinguish between large and small prey, as large prey causes stronger vibrations. Antlions abandoned a small prey when they noticed that a large one was approaching.

Faster

Because antlions learn to anticipate the capture of a prey, they are able to handle it efficiently, the authors conclude. This is advantageous: in the laboratory, the larvae that learned to associate the vibrational cue with prey grew faster, were bigger and pupated sooner than the larvae that had not been given the opportunity to learn. Trained larvae thus shorten the larval stage, which is the most vulnerable stage of their life cycle because larvae are exposed to wind and rain and accessible to predators. Moreover, the more food a female larva consumes, the bigger and stronger the eggs she will produce later as adult.

So, even an animal that captures prey with a sit-and-wait strategy proves to be able to improve this strategy by learning.

Willy van Strien

Photos:
Large: an antlion larva, probably Myrmeleon formicarius. Aiwok (Wikimedia Commons, Creative Commons CC BY-SA 3.0)
Small: adult Myrmeleon formicarius. Gilles San Martin (Wikimedia Commons, Creative Commons CC BY-SA 2.0)

Watch a video of an antlion and its pitfal

Sources:
Hollis, K.L., 2016. Ants and antlions: The impact of ecology, coevolution and learning on an insect predator-prey relationship. Behavioural processes, online December 6. Doi: 10.1016/j.beproc.2016.12.002
Kuszewska, K., K. Miler, M. Filipiak & M. Woyciechowski, 2016. Sedentary antlion larvae (Neuroptera: Myrmeleontidae) use vibrational cues to modify their foraging strategies. Animal Cogntion 19: 1037-1041. Doi: 10.1007/s10071-016-1000-7
Hollis, K.L., F.A. Harrsch & E. Nowbahari, 2015. Ants vs. antlions: An insect model for studying the role of learned and hard-wired behavior in coevolution. Learning and Motivation .50: 68-82. Doi: 10.1016/j.lmot.2014.11.003

Sprouted food

Common ragworm caches seeds and consumes the seedlings

The common ragworm sprouts seeds

Common ragworms bury seeds of cordgrass for future use: when the seeds have germinated, the worms eat the sprouts. Sprouting seeds is a newly discovered gardening strategy in animals, as Zhenchang Zhu and colleagues point out.

The seeds of cordgrass, Spartina species, are protected by husks that make them inedible for the common ragworm, Hediste diversicolor. Yet these worms take the trouble to drag the large seeds to their burrows and pull them inside. This is deliberate behaviour, according to Zhenchang Zhu and colleagues. The buried seeds will germinate and the worms can eat the sprouts. In fact, the seeds are a nutritious dietary supplement for the ragworms, which feed mainly on low-quality sedimentary organic matter, because they are high in protein and vitamins.

Waiting

Common ragworms live in the seabed of intertidal flats. Each animal inhabits a self-made burrow in the sand or the mud.The species is native to the north-east Atlantic.

In experiments, the researchers noticed that the ragworms wouldn’t eat intact cordgrass seeds. But if sprouted seeds were offered, they did eat them. Experiments also showed that the worms grew much better when given a diet including cordgrass sprouts than on a diet without sprouts.

It is striking that they cache the seeds, because that behaviour pays off only in the long term. The cordgrass produces seeds from October to March, and these seeds will germinate from April until July. So, the worms have to wait a few weeks or months before their stored food supply will be usable.

Seed dispersal

Sprouting seeds to consume the seedlings is a form of agriculture. More examples of agriculture in animals exist, such as the well-known fungus gardens of ants and termites. The sprouting strategy of common ragworms, however, differs from fungus gardening. While the fungus is the main food source for the ants and termites, the sprouts are a superior supplementary food for the ragworms: superfood instead of staple food.

Also, a mutual relationship exists between termites or ants and the fungus they grow: the animals are dependent on their crop, but the fungus is also dependent on its growers. Common ragworms and cordgrass, in contrast, have a predatory relationship, as the cached seeds are eaten after germination. The ragworms may help in seed dispersal, though. Buried seeds will not be displaced by water currents, retain their viability and can produce new plants when the ragworm that cached them dies or is eaten itself. This often happens, as common ragworms have many predators: birds like avocets and curlews, and fish like plaice and sole.

The authors suggest that common ragworms and their relatives may bury seeds of plants like seagrass and glasswort to sprout them as well.

Willy van Strien

Photo: Common ragworm. © Jim van Belzen

Source:
Zhu, Z., J. van Belzen, T. Hong, T. Kunihiro, T. Ysebaert, P.M.J. Herman & T.J. Bouma, 2016. Sprouting as a gardening strategy to obtain superior supplementary food: evidence from a seed-caching marine worm. Ecology 97: 3278-3284. Doi: 10.1002/ecy.1613

Mini garden

Some arboreal ants grow useful plants

A Squamellaria major plant on macaranga, grown by ants

Gardening is an art – and there are ants that master this art. On the branches of trees they cultivate plants to live in or to strengthen their nests, as research teams of Guillaume Chomicki and Jonas Morales-Linares report.

Many ants and plants are partners in a mutualism: the plants provide the ants with a place to live or with nectar, and the ants deposit their droppings as fertilizer or protect the plants from herbivorous insects. Some tropical arboreal ants go a step further and cultivate the plants they live with. As these plants grow upon tree branches (they are epiphytes), it is more difficult for them to obtain nutrients than it is for plants that root in the soil, so the ant-plant mutualism is a good strategy. Many of the ant-grown plants are completely domesticated and would perish without the ants.

Seed collection

Philidris nagasau, native to Fiji, inhabits the hollow stems of Squamellaria species, bulb-shaped plants that grow on trees. The ants live nowhere else, and six Squamellaria species are always inhabited by these residents. The ant fertilizes the plants, as Guillaume Chomicki and colleagues had previously shown.

workers of Philidris nagasau inspect seedlings of SquamellariaNow, they discovered that the ant makes sure that plants are available by farming them. The researchers observed ant workers collecting exclusively the seeds of these six Squamellaria-species, and not those of any other species. They take them out of the unripe fruits, insert them in fissures and cracks in the bark of a tree and patrol the planting sites. Soon after, the seeds germinate and seedlings appear on the tree, and as soon as they form a cavity, a few ants will enter it, likely to leave their droppings. By doing so, they grow the plants they need to live in.

So, this ant-plant mutualism is more intimate than previously thought. The plants need the ant partner not only for nutrition, but also for seed dispersal.

Beautiful flowers

A different kind of plant nurseries can be found in Central and South America: conspicuous little gardens that hang from some trees. They are the overgrown carton nests of certain ant species. The ants collect seeds of epiphytes and insert them in the walls of their nest, where of the seeds germinate and grow up. The plant roots strengthen the nest and take up water when it rains, so that the nests don’t disintegrate. In return, the ants fertilize the plants and protect them against herbivorous insects. Some plants are exclusively dispersed by the ants and only germinate in an ant nest.

Hanging garden of Azreca gnavaAzteca gnava from southern Mexico and Panama is such a gardening ant. His gardens are frequently found in plantations, as Jonas Morales-Linares and colleagues report, mostly on cocoa, mango, sapote and orange trees. The gardens contain twelve plants on average, typically of two or three different species. Two plant species that cannot live outside these gardens are the bromeliad Aechmea tillandsioides and the orchid Coryanthes picturata. Apparently, the gardening ants have a good taste, for these plants have beautiful flowers.

Three million years

The ant Camponotus femoratus of the Amazonian lowland forest plants similar gardens. Mutualism is obligate for the plant Peperomia macrostachya, that only lives in the nests of this ant. Elsa Youngsteadt and colleagues showed that Camponotus femoratus is the only ant species to collect the seeds of this plant. The ant takes them from the plant, from the soil or from the feces of birds and mammals that have eaten the fruits. Probably, the seeds emit volatiles that only only Camponotus femoratus appreciates. The ant inserts many Peperomia seeds in the walls of its nest. Each seed has only a small chance to germinate there, but the seeds that are not brought into the ant’s nests have no chance to sprout at all.

According to Chomicki, Philidris nagasau in Fiji descends from ancestors that, just like their American colleagues, made carton nests in trees and planted seeds in the wall. But at some time, Philidris nagasau stopped making nests and planted the seeds in the bark instead; at roughly the same time Squamellaria species developed the hollow, bulbous stems that can house the ants. So, ant and plants co-evolved; their co-evolution started about three million years ago.

Willy van Strien

Photo’s:
Large: a Squamellaria major plant, grown by ants on macaranga. © Guillaume Chomicki
Small 1: workers of Philidris nagasau inspecting seedlings. © Guillaume Chomicki
Small 2: hanging garden of Azteca gnava. © Jonas Morales-Linares

Sources:
Chomicki, G. & S.S. Renner, 2016. Obligate plant farming by a specialized ant. Nature Plants 2: 16181. Doi: 10.1038/nplants.2016.181
Chomicki, G., Y.M. Staedler, J. Schönenberger & S.S. Renner, 2016. Partner choice through concealed floral sugar rewards evolved with the specialization of ant-plant mutualisms. New Phytologist, online May 9. Doi: 10.1111/nph.13990
Morales-Linares, J., J.G. García-Franco, A. Flores-Palacios, J.E. Valenzuela-González, M. Mata-Rosas & C. Díaz-Castelazo, 2016. Vascular epiphytes and host trees of ant-gardens in an anthropic landscape in southeastern Mexico. The Science of Nature 103: 96. Doi: 10.1007/s00114-016-1421-9
Youngsteadt, E., J. Alvarez Baca, J. Osborne & C. Schal, 2009. Species-specific seed dispersal in an obligate ant-plant mutualism. PLoS ONE 4: e4335. Doi: 10.1371/journal.pone.0004335