Evolution and Biodiversity

Month: November 2017

In its own bubble

Alkali fly manages to stay dry in very wet water

Alkali fly can enter the alkaline Mono Lake

Each insect would drown in Mono Lake, a saline soda lake in California. Each insect, except for the alkali fly, which has unique adaptations to survive the extreme environment, as Floris van Breugel and Micael Dickinson show.

Only bacteria, algae and brine shrimp tolerate the saline water of Mono Lake in California- and the alkali fly Ephydra hians, which flourishes here. It is an amazing critter. The larvae develop in the water, feeding on the algae. Adult flies, which occur in great numbers along the shores, regularly crawl into the water to feed on algae or to lay their eggs. They are the only adult insects that are able to dive into the briny water and emerge alive, Floris van Breugel and Michael Dickinson report.

Wax

Several insect species exist that survive submersion in the water of lakes or streams, thanks to a water-repellent layer of hydrocarbons (waxy substances) on their cuticle and tiny hairs that trap a layer of air. But they would be wetted and drown in Mono Lake. That is because the water of this lake contains a large amount of sodium carbonate, a salt known as baking soda, the presence of which renders the insects incapable of keeping the layer of air intact; such water is ‘wetter’ than pure water and penetrates into the layer of air. Sodium carbonate is one of the substances that make the water strongly alkaline.

But the alkali fly easily dives into the alkaline water and when it emerges, it is completely dry. The researchers show that this is possible because the diving fly possesses a very dense mat of hairs and a layer of superhydrophobic hydrocarbons which, combined, prevent wetting. Upon entering the water, a stable air bubble forms around the fly, which enables it to spend 15 minutes underwater; the bubble protects it from the hostile water and offers a supply of oxygen.

Limestone columns

In the past 60,000 years, Mono Lake became more salt and more alkaline because it has no outlet, and as water is evaporating, the concentrations of mineral salts gradually rise. Limestone columns, named tufa, developed, along which the flies descend below water surface.

The alkali fly’s ancestors had to enter the lake to forage in a time when the lake was still fresh and algae were the only food available, the authors hypothesize. While the lake gradually became more alkaline, the fly adapted to the new conditions. Nowadays, it can safely graze underwater, as no fish predators occur. The flies are preyed upon by many birds that forage near the lake, like gulls.

When oil, from decaying organic matter or sunscreen and other cosmetics, is floating on the water, even the alkali flies are wetted and drown, in spite of their unique adaptations.

Willy van Strien

Photo: Alkali fly, pictured under water inside its protective air bubble. Floris van Breugel/Caltech

Source:
Van Breugel, F. & M.H. Dickinson, 2017. Superhydrophobic diving flies (Ephydra hians) and the hypersaline waters of Mono Lake. PNAS, online Nov. 20. Doi: 10.1073/pnas.1714874114

Second hand meal

Sea slug consumes the food of its prey

the pilgrim hervia steals the prey of its prey

The diet of the pilgrim hervia Cratena peregrina, a sea slug, not only consists of the hydroids on which it lives; this animal also feeds on prey that was captured by the polyps, Trevor Willis and colleagues report.

The pilgrim hervia Cratena peregrina is a fairylike beautiful creature. Its white back bears tens of red protuberances with a luminescent blue tip, much like little candles. The sea slug occurs in the Mediterranean Sea and the eastern Atlantic Ocean on the branched colonies of hydroids such as Eudendrium ramosum and Eudendrium racemosum. The colonies provide shelter, the polyps are edible and possess defensive weapons that are useful. And according to Trevor Willis and colleagues, there is even more: the polyps capture food which the sea slug then may steal and consume.

Hydroids are cinidarians, just like jellyfish, and their mouth is surrounded by tentacles which grasp their prey, mainly zooplankton. They also possess stinging cells that are able to eject a harpoon (nematocyst) with a toxic content to paralyze prey or to deter predators from attacking.

Cnidosacs

But the pilgrim hervia is not deterred. It devours polyps without being bothered by stinging cells, as has already been known for a long time. In one way or another it is protected against injury by nematocysts that are fired while it is feeding, and many nematocysts that are ingested remain undischarged. Undischarged harpoons are not digested, but remain structurally intact while passing through the digestive system; some of them are discarded in the faeces, but others are sequestered and stored in cellular vesicles (cnidosacs) at the tips of the dorsal appendages.

So, the sea slug incorporates its prey’s weapons, and it can use them to frighten off hungry fish predators. Because of the bright aposematic coloration, predators quickly learn not to touch this beautiful but unpalatable morsel.

Prey of prey

Now, Willis shows that Cratena peregrina not only obtains second hand weapons from the hydroids, but also takes the prey that the polyps have captured. Laboratory experiments revealed that the sea slugs preferentially feed on polyps that are handling prey, for instance brine shrimp. By doing so, the sea slug ingests two food types in one bite: its prey and its prey’s prey. The second hand food, zooplankton, appears to be a substantial part of its diet – and the sea slug doesn’t have to capture this mobile prey by himself.

Willy van Strien

Photo: Cratena peregrina on Eudendrium ramosum. Français (Wikimedia Commons, public domain)

Watch the sea slug on YouTube

Sources:
Willis, T.J., K.T.L. Berglöf, R.A.R. McGill, L. Musco, S. Piraino, C.M. Rumsey, T.V. Fernández & F. Badalamenti, 2017. Kleptopredation: a mechanism to facilitate planktivory in a benthic mollusc. Biology Letters 13: 20170447. Doi: 10.1098/rsbl.2017.0447
Greenwood, P.G., 2009. Acquisition and use of nematocysts by cnidarian predators. Toxicon 54: 1065-1070. Doi:10.1016/j.toxicon.2009.02.029
Aguado, F. & A. Marin, 2007. Warning coloration associated with nematocyst-based defences in aeolidiodean nudibranchs. Journal of Molluscan Studies 73: 23-28. Doi:10.1093/mollus/eyl026
Martin, R., 2003. Management of nematocysts in the alimentary tract and in cnidosacs of the aeolid nudibranch gastropod Cratena peregrina. Marine Biology 143: 533-541. Doi: 10.1007/s00227-003-1078-8

Camouflage suit

Covered with sponges, a crab is poorly visible

Spider decorator crab Camposcia retusa covered with sponges

The spider decorator crab Camposcia retusa adorns its legs and carapace exuberantly with sponges, probably to mislead predators, Rohan Brooker and colleagues write. The crab accumulates more decorations when it has no access to shelter.

Equipped with a lot of sponges, complemented by some algae and dead organic matter, the spider decorator crab Camposcia retusa moves around: a weird appearance. The crab is associated with tropical coral reefs in the Indian Ocean and the western Pacific Ocean. Why would this little animal, with a carapace that is a few centimetres wide, carry so much stuff that probably hampers its mobility?

According to Rohan Brooker and colleagues, a highly decorated crab is less visible to its predators. In addition, many sponges are noxious or toxic, and they may deter predators that perceive such a crab in spite of its camouflage.

The researchers wanted to learn more about the crab’s decorating behaviour. From reefs, they caught a number of crabs to study their decoration patterns. They then conducted a manipulative behavioural experiment on crabs in tanks to which they added red polyester pompoms of different sizes to see how the crabs would use them.

Velcro

They found that the animals covered their carapace and the third and fourth sets of walking legs most (they have four pairs of walking legs). In the experiments, they placed the largest and heaviest pompoms only on the hind legs, which are the strongest. The chelipeds – which the crabs use for feeding and communication – and the first set of legs were hardly decorated. The parts of the body on which items are distributed are equipped with hooked seta like those of Velcro, to which pieces of sponge and other material are easily attached.

Defence

In another experiment, the crabs either got a shelter in the form of a PVC elbow in their tank or no shelter. The crabs that had no access to shelter decorated more than the crabs that had shelter, hence the conclusion that the decoration is primarily an antipredator defence. Because the animals accumulate and retain a wide range of materials, camouflage most likely is the main effect of decoration. And because they prefer to attach sponges, it may also serve as a deterrent. It would be great if the researchers now would go on to show that predators have more difficulty perceiving a prey in camouflage suit, or that they are deterred by the sponges.

Decoration occurs in many animal species, most frequently in aquatic species. The spider decorator crab Camposcia retusa is a beautiful example of this behaviour.

Willy van Strien

Photo: Patrick Randall (via Flickr, Creative Commons CC BY-NC-SA 2.0)

Three examples of decorated crabs on YouTube: 1, 2, 3

Source:
Brooker, R.M., E.C. Muñoz Ruiz, T.L. Sih & D.L. Dixson, 2017. Shelter availability mediates decorating in the majoid crab, Camposcia retusa. Behavioral Ecology, online Oct. 17. Doi: 10.1093/beheco/arx119

Saving energy

Venus flytrap controls the trapping process in several ways

Venus flytrap has several mechanisms to save energy

Carnivorous plants should control their energy budget, otherwise the benefits of capturing insects will not compensate for the costs. The Venus flytrap has several mechanisms to limit waste of energy, Andrej Pavlovič and colleagues discovered.

To us, it is almost impossible to catch a fly. But the Venus flytrap has no difficulty. The plant (Dionaea muscipula) occurs in North and South Carolina (United States), where it grows in sunny, wet areas on poor soil; it can grow there by ‘eating’ insects. The catch of a fly yields lots of nutrients, but the process also demands lots of energy, and the balance between yield and costs must be positive, otherwise the plant will not grow. So, it has evolved a number of control mechanisms to minimize waste of energy, as Andrej Pavlovič and colleagues point out.

The leaves of the Venus flytrap end in a two-lobed trapThe leaves are arranged in a rosette, and each leaf has a double-lobed trap at the top with a row of ten to twenty teeth at the edge of each lobe. Glands along the edges secrete a sugary substance that attracts insects. Each lobe has a few trigger hairs that respond when touched by an insect, causing the trap to snap shut rapidly. The central zone of the trap contains glands secreting enzymes that digest a trapped prey and proteins that enable the glands to absorb the nutrients that are released upon digestion.

The Venus flytrap has to invest a lot of energy to keep the traps operational and to produce lures, digestive enzymes and absorption proteins. How does the plant control these costs?

1: Two times

First of all, a trap will not snap shut until trigger hairs are touched at least twice within twenty seconds, when there is a fair chance that an insect has landed. So, a trap will not close when a for instance a wind-blown dust grain touches a trigger hair.

2: Panic

But not every animal that landed turns out to be a nice fat fly. Upon closure, small gaps between the marginal teeth allow little insects that are not worth the effort to digest them to escape. If the trap is empty, it will reopen again after a few hours. But if a large insect is encased, it will struggle in panic, and his movements induce the trap to seal hermetically. After the trigger hairs have been touched at least five times, the secretion of digestive enzymes and absorption proteins starts, and the more movements the prey makes, the more enzymes and proteins will be secreted.

3: Limited reaction

Still, a trap may snap shut, close tightly and secrete digestive enzymes and absorption proteins in vein. This happens when it is damaged. The cause of the error is to be found in the evolution of carnivorous plants, for the habit to capture insects probably evolved from defence mechanisms against herbivorous insects. In ordinary plants, herbivory generates an electrical signal, which in turn stimulates the accumulation of plant hormones, jasmonates. These will induce the plants to synthesize toxins that harm the insects, not only locally on the place of damage, but also elsewhere in the plant, as a precaution. In carnivorous plants, such as the Venus flytrap, things have a bit changed. In these plants, the presence of an insect triggers an electrical signal that induces the accumulation of jasmonates; these hormones stimulate the secretion of digestive enzymes and absorption proteins. The electrical signal also induces the trap to close.

Now, Pavlovič conducted an experiment in which he repeatedly wounded a trap of Venus flytraps by piercing it with a needle to mimic herbivory, and noticed that the trap showed the same response as when the trigger hairs wouldhave been touched by an insect: the trap closed and jasmonates accumulated; if he continued damaging every few minutes, the traps secreted digestive enzymes and absorption proteins – to no end. But the misplaced reaction was limited to the local trap that was damaged and did not occur elsewhere in the plant, in contrast to defence reactions agains herbivores.

4: Process stops

The secretion of digestive enzymes and absorption proteins does not run at full speed from the start. Only when certain substances from an enclosed prey are released, the rate of secretion increases to the highest speed. If there is no prey, the process will stop. So, the plant doesn’t waste much energy when it is misled.

After about ten days the fly is digested and the fall will reopen again.

Willy van Strien

Photos
Large: ©Andrej Pavlovič
Small: Olivier License (via Flickr, Creative Commons CC BY-NC-ND 2.0)

Watch the trapping process

Sources:
Pavlovič, A., J. Jakšová & O. Novák, 2017. Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). New Phytologist 216: 927-938. Doi: 10.1111/nph.14747
Böhm, J., S. Scherzer, E. Krol, I. Kreuzer, K. von Meyer, C. Lorey, T.D. Mueller, L. Shabala, I. Monte, R. Solano, K.A.S. Al-Rasheid, H. Rennenberg, S. Shabala, E. Neher & R. Hedrich, 2016. The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake. Current Biology 26: 286-295. Doi: 10.1016/j.cub.2015.11.057
Libiaková, M., K. Floková, O. Novák, L. Slováková & A. Pavlovič, 2014. Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap (Dionaea muscipula Ellis) is regulated by different stimuli from prey through jasmonates. PLoS ONE 9: e104424. Doi:10.1371/journal.pone.0104424
Pavlovič, A., V. Demko & J. Hudák, 2010. Trap closure and prey retention in Venus flytrap (Dionaea muscipula) temporarily reduces photosynthesis and stimulates respiration. Annals of Botany 105: 37-44. Doi:10.1093/aob/mcp269