Colour meanings

Aegean wall lizard with white throat is more brave

Eagean wall lizard with white throat is bold

An Aegean wall lizard with striking throat colour will run off fast when a predator looms, Kinsey Brock and Indiana Madden write.

In Aegean or Erhard’s wall lizard, Podarcis erhardii, different colour morphs exist: the animals have either a white, yellow or orange throat. The lizards can be found on walls in South-eastern Europe, in a dry landscape with tough shrubs. They have several predators: snakes, birds, and mammals.

When a predator appears, a lizard will flee. But that implies that it must stop what it was doing: sunbathing or foraging for food. For that reason, it will not leave until necessary. Kinsey Brock and Indiana Madden wanted to know whether the three colour morphs have a similar flight initiation distance. They checked the distance they could approach a lizard before it ran away.

Careful

The throat colour of the Aegean wall lizard is genetically determined. Most animals, males and females alike, have a white throat; yellow and orange are less common. There are also individuals with mosaic throat colours, but they are rare. Brock and Madden investigated lizards with plain throat colour on the Greek island of Naxos.

You can get most closely to the white-throated wall lizards, they found; lizards with an orange throat run off earliest; yellow-throated animals are in between.

So, animals with an orange throat are the most careful. They also stay closest to a refuge: a crevice in a wall or dense vegetation. And once they fled, they are slower to reappear than animals with yellow or white throats.

It is in line with lab research showing that white-throated males are the most aggressive, bold, and brave.

Striking colour

An orange-throated Aegean wall lizard probably is more wary because it is more detectable. The grey-brown blotchy body has a camouflage colour, but a yellow, and especially an orange throat stands out against the background. This makes it easier for a predator to discover a lizard with an orange throat, so, in turn, it must flee earlier to escape from the enemy.

Willy van Strien

Photo: Male Podarcis erhardii with white throat. Gailhampshire (Wikimedia Commons, Creative Commons CC BY 2.0)

Source:
Brock, K.M. & I.E. Madden, 2022. Morph‑specific differences in escape behavior in a color polymorphic lizard. Behavioral Ecology and Sociobiology 76: 104. Doi: 10.1007/s00265-022-03211-8

Detering owls by buzzing

Greater mouse-eared bat mimics the sound of bees and wasps

greater mouse-eared bat deludes owls by buzzing

Owls avoid the buzzes of angry bees and wasps. The greater mouse-eared bat takes advantage of that fear by mimicking the sound, Leonardo Ancillotto and colleagues show.

A greater mouse-eared bat in stress behaves weird: it buzzes like a startled group of bees or wasps. Leonardo Ancillotto and colleagues noticed this when they handled the animals during their research. They wondered whether the bats mimic the sound of alarmed bees and wasps when they feel threatened by a potential predator to deter it. It was worth a study.

The greater mouse-eared bat, Myotis myotis, occurs in most European countries. Its enemies are owls, which are nocturnal like the bats.

Larynx

To find out, the researchers first analysed sound recordings of buzzing bats and compared that to the buzzing sounds that several species of bees and wasps produce when they are harassed and defend their nests. Among those species were honeybee (Apis mellifera) and hornet (Vespa crabro). And yes: the buzzing sounds were similar, especially to the ears of an owl.

The similarity is remarkable because the sound is created in different ways. Bees and wasps buzz by beating their wings, while bats produce the sound with the larynx.

Next, the researchers conducted playback experiments in which they broadcasted the buzzing sounds of honeybee, hornet or greater mouse-eared bat to a number of barn owls and tawny owls. The buzzing of the bat was most similar to that of honeybee and hornet. In addition, these insects live in tree cavities, in which owls are interested. As control, they broadcasted the communication calls of another bat species, the European free-tailed bat (Tadarida teniotis).

Experience

The owls moved away from loudspeakers that emitted buzzes, whether these were produced by honeybee, hornet, or greater mouse-eared bat. Bat communication calls, in contrast, attracted them. Wild owls, which may have encountered angry bees or wasps and suffered painful stings, were even more averse to buzzing sounds than owls that had been raised in captivity.

Does it make sense that owls, which are nocturnal animals, are afraid of bees and wasps, which are active during the day? Yes, that fear is conceivable. Honeybees fly until late evening in summer and hornets may fly at night, under moonlight or artificial light. Barn owls appear already at dusk, and when they have hungry young to feed, tawny owls sometimes even hunt during the day.

Apparently, the owls are afraid of bees and wasps and the bats delude them. Buzzing like bees or wasps, acoustic mimicry, may be all they can do to escape from their predator.

Willy van Strien

Photo: Greater mouse-eared bat. Kovács Richárd (Wikimedia Commons, Creative Commons CC BY-SA 3.0)

Source:
Ancillotto, L., D. Pafundi, F. Cappa, G. Chaverri, M. Gamba, R. Cervo & D. Russo, 2022. Bats mimic hymenopteran insect sounds to deter predators. Current Biology 32: R408-R409. Doi: 10.1016/j.cub.2022.03.052

Valves closed

Blue mussels learn to avoid parasites

blue mussels close their shells when parasites are around

Blue mussels adapt their behaviour when parasitic larvae are nearby, according to research by Christian Selbach and colleagues.

During food intake, blue mussels, Mytilus edulis, run a risk. The bivalve molluscs feed by filtering water. It enters through an inlet and flows over gills, which not only take oxygen from the water, but also food particles, mainly plankton. These particles get stuck on a mucous layer and are transported to the stomach. The water exits through an outflow opening.

With the inflow of water, mussels may ingest larvae of a harmful parasite.

Mussels that encountered the parasite before, have learned to be more careful. If they notice the presence of parasites in the water, they close their valves and stop filtering to avoid further infection, Christian Selbach and colleagues show.

Intermediate host

The parasite, the fluke (or trematode) Himasthla elongata, has a complicated life cycle in which mussels are indispensable. The cycle starts in a bird that lives near or at sea, such as an oystercatcher, common eider, or scoter; in these animals, adult parasites thrive. They mate and produce eggs that end up in the water with the bird’s faeces. The eggs hatch and the larvae, so-called miracidia, are eaten by common periwinkles; the small snails are the first intermediate host.

In the snails, the parasites develop into the next larval stage, the cercariae, which also end up in the seawater. These are the larvae that infect filtering mussels, which are the second intermediate host. Mussels live in the tidal zone, near the coast, where they can form large shell reefs.

After ingestion by mussels, the parasitic larvae form cysts, a resting stage. Infected mussels grow poorly and are vulnerable to predation by oystercatcher, eider or scoter. And that completes the circle: those birds are the primary host. Once a bird has eaten infected mussels, the parasites mature, and the story starts all over again.

Shut off

If infective larvae are present in the water, mussels cannot help ingesting them when filtering. The only thing they can do to avoid infection is to stop taking in water. But that has a price, because it also means that they cannot take in oxygen and food.

Yet they stop, according to Selbach’s experiments in which he exposed mussels to infective larvae. But they have to learn it.

Mussels that have no previous experience with the parasites go on filtering when they are exposed to larvae. But mussels that met the parasite before and got infected, now shut themselves off. They reduce filtration activity and close the valves with the adductor muscles, which costs energy. But apparently, it would be worse to ingest another dose of parasitic larvae.

Now, it would be interesting to find out how the mussels notice that there are infective larvae around; that is still unclear.

Willy van Strien

Photo: blue mussel. Inductiveload (Wikimedia Commons, public domain)

Source:
Selbach, C., L. Marchant & K.N. Mouritsen, 2022. Mussel memory: can bivalves learn to fear parasites? Royal Society Open Science 9: 211774. Doi: 10.1098/rsos.211774

Bubble on the head

Water anole rebreathes exhaled air when submerged

Water anole re-uses exhaled air

Some Anolis lizard species can stay underwater for a while without drowning. Thanks to a layer of air around their water-repellent skin, they continue to breathe, Chris Boccia and colleagues write.

The water anole, Anolis aquaticus, is not a fast lizard. But it often manages to escape from a predator, such as a larger lizard, snake, or bird. In case of danger, it splashes into the water to be out of sight. Although it may reappear only after more than fifteen minutes, it does not suffer from breathlessness. That is because it makes good use of the air it has with it, Chris Boccia and colleagues show.

The water anole from Costa Rica is one of more than 400 Anolis lizard species which occur in tropical America. Some species, including this one, live close to water and often submerge. The researchers studied how these semi-aquatic species survive submersion and how they differ from species that always remain on dry land.

All Anolis species appear to have a water-repellent skin. If they get into the water, a thin layer of air forms between water and skin across the body surface. In other words, they do not get wet like other lizards. As a consequence, no air bubbles up to the water surface to escape when an anole exhales underwater, as in other animals. Instead, the exhaled air is incorporated into the air layer around the body. This is visible as an air bubble near the nostrils. In the water anole, that bubble appears on top of its snout.

Bubble

Semi-aquatic species like the water anole use that trapped air. They re-inhale it. And exhale, and inhale, five times at least.

How does that help?

Breathing is necessary to take up oxygen from the air into the blood and to get rid of carbon dioxide. That gas exchange occurs in the lungs. The carbon dioxide exhaled by a diving anole dissolves easily from the air bubble in the water. So, it gets rid of that waste gas.

Also, with each breath, it takes up oxygen from the air bubble, the researchers show: the oxygen content of the bubble slowly decreases. The oxygen supply may be partly replenished if the air that comes from the lungs where it lost oxygen mixes with air that did not pass through the lungs: the air layer around the skin and air from mouth, nose, and windpipe.

Patience

And the bubble might act like a gill; perhaps it absorbs oxygen from the water. That will not be enough for a long stay underwater. But it might extend the maximum dive time a bit. A possible indication for this supplemental oxygen is that the oxygen content of the air bubble decreases more and more slowly over time. But that may also be explained by a lowered metabolism underwater, and thus less oxygen consumption.

Terrestrial Anolis species occasionally reuse expired air when submerged, but they do not do so routinely and not for as long as the water anole and other semi-aquatic species – that have to sustain rebreathing until the predator’s patience is gone.

Willy van Strien

Photo: submerged water anole with bubble on snout. ©Lindsey Swierk

On You Tube, the researchers show it here and here

Source:
Boccia, C.K., L. Swierk, F.P. Ayala-Varela, J. Boccia, I.L. Borges, C.A. Estupiñán, A.M. Martin, R.E. Martínez-Grimaldo, S. Ovalle, S. Senthivasan, K.S. Toyama, M. del Rosario Castañeda, A. García, R.E. Glor & D.L. Mahler, 2021. Repeated evolution of underwater rebreathing in diving Anolis lizards. Current Biology, online May 12. Doi: 10.1016/j.cub.2021.04.040

Hornets deterred

Asian honey bee discourages its enemy

hornets are predators of Asian honey bee

Hornets are dangerous predators of the Asian honey bee. The bees try to avert danger by making approaching hornets know they have been seen, as Shihao Dong and colleagues describe. Or by covering the nest entrance with animal faeces, as Heather Mattila and colleagues show.

The Asian honey bee, Apis cerana, is threatened by dangerous hornets, more than the European honey bee. Such large wasp with strong jaws and venomous sting can hover in front of a colony of honeybees, plucking foraging bee workers from the air to consume them.

And worse: hornets can operate in groups, enter a bees’ nest, kill any adult bees that do not flee and take possession of the larvae and pupae, which they bring to their own nest to feed their offspring. Like honeybees, hornets live in social groups with a queen laying eggs and workers taking care of her offspring.

So, a visit from hornets is something that should definitely not occur.

Asian honey bees have developed different defence mechanisms. The bees inform an approaching hornet that they are ready to defend themselves, as Shihao Dong and colleagues report. So, a surprise attack is not possible. Or they smear animal faeces around the entrance of their nest to frighten off the enemy, Heather Mattila and colleagues show.

I see you

Hornets are especially dangerous in autumn, when the brood in their nests needs a lot of animal food.

A hornet that detects a colony of Asian honey bees cannot enter it immediately. The nest entrance is too small and it is monitored by bee guards that alert their nest mates if necessary. But the hornet can apply a chemical scent mark to the nest to recruit dozens of colleagues, and collectively they can enlarge the nest opening by chewing and invade. The bees have to prevent that from happening. They have to deter the first hornet, the scout, and avert a group attack.

That is possible by showing an approaching hornet that it has been seen. Asian honey bees in China display a so-called I-see-you signal: when an Asian hornet, Vespa velutina, approaches the nest, bee guards will shake their abdomen. Guards copy this movement from each other, even without seeing the hornet with their own eyes, and the behaviour attracts more guards. The closer the hornet approaches or the faster it flies, the faster the swinging motion becomes, up to more than 30 sweeps per minute.

Asian honey bees kill hornet in a heat ballIt repels the hornet. Because if the bees spot it in time, they are able to attack and kill it, as was already known. They enclose it in a dense ball of tens or hundreds of bees. The bees vibrate their flight muscles, so that the temperature in the ball rises to about 47°C, a temperature that the bees just endure, and the carbon dioxide content rises. The hornet succumbs.

But it is better if it doesn’t get that far, because killing a hornet in such heat ball takes a lot of time and energy. Not all bees survive the heat balling. Hence, the bees first try to discourage the enemy.

Sullied

The Asian hornet is a small species, and not the most dangerous one for the Asian honey bee. It does not perform mass-attacks and does not enter a bees’ nest. More threatening are the Asian giant hornet, Vespa mandarinia, and the related Vespa soror.

To discourage the larger hornets, Asian honey bees take more pains than for the smaller species, as it seems. In Vietnam, they manage to keep the large hornet Vespa soror away from their nest by applying mounded spots of animal poo around the entrance. When workers notice a hornet or its chemical scent mark, they look for a pile of animal dung, pick up a clump of it with their mouth parts, carry it to the nest and stick it close to the entrance. Upon detecting the smaller Asian hornet, Vespa velutina, near their nest, they don’t do this.

A sullied entrance acts as a deterrent: hornets leave faster and are less likely to land on the nest and enlarge the entrance opening. The researchers are not yet sure why animal poo has this repellent effect.

Odour mark masked

In northern Japan, honeybees smear chewed plant material around the entrance of their nest after spotting an Asian giant hornet, Ayumi Fujiwara’s research showed. It could well be that the smell of the stuff masks the chemical odour mark of the hornet. And maybe foetid poop does as well.

Willy van Strien

Photos:
Large: Japanese yellow hornet, Vespa simillima xanthoptera, at the nest of Asian honey bees, Apis cerana. Takahashi (Wikimedia Commons, Creative Commons CC BY-SA 2.1 JP)
Small: Asian honey bees forming a heat ball around two hornets. Takahashi (Wikimedia Commons, Creative Commons CC BY-SA 2.1 JP)

Sources:
Dong, S., K. Tan & J.C. Nieh, 2020. Visual contagion in prey defence signals can enhance honest defence. Journal of Animal Ecology, online November 20. Doi: 10.1111/1365-2656.13390
Mattila, H.R., G.W. Otis, L.T.P. Nguyen, H.D. Pham, O.M. Knight & N.T. Phan, 2020. Honey bees (Apis cerana) use animal feces as a tool to defend colonies against group attack by giant hornets (Vespa soror). PLoS ONE 15(12): e0242668. Doi: 10.1371/journal.pone.0242668
Fujiwara, A., M. Sasaki & I. Washitani, 2016. A scientific note on hive entrance smearing in Japanese Apis cerana induced by pre-mass attack scouting by the Asian giant hornet Vespa mandarinia. Apidologie 47: 789-791. Doi: 10.1007/s13592-016-0432-z
Tan, K., Z. Wang, H. Li, S. Yang, Z. Hu, G. Kastberger & B.P. Oldroyd, 2012. An ‘I see you’ prey-predator signal between the Asian honeybee, Apis cerana, and the hornet, Vespa velutina. Animal Behaviour 83: 879-882. Doi: 10.1016/j.anbehav.2011.12.031

Acid gulp

Ant swallows its own formic acid to stay healthy

Tnaks to formic acid, Formicinae ants are healthy

Formic acid appears to be a great help for ants to prevent infection from contaminated food, Simon Tragust and colleagues discovered. A gulp after each consumption increases their survival chance.

People like sweet desserts, but for ants of the subfamily Formicinae it is different. They take a gulp of formic acid after eating or drinking, Simon Tragust and colleagues witnessed.

This is remarkable, because formic acid is an aggressive substance. Formicinae ants produce it in a venom gland that has an opening at the tip of the abdomen. They were known to spray it at predators, such as birds, spiders, and insects, to defend themselves, and this is understandable. But swallowing?

Disinfect

Tragust and colleagues had shown previously that Formicinae ants use their acid not only against predators, but also against pathogens. Workers apply it in combination with resin to keep an entomopathogenic fungus (Metarhizium brunneum) out of their nest.

Also, they use formic acid to keep the brood clean. If they detect pupae covered with spores of the pathogenic fungus, they clean them and cover them with formic acid, which they had taken up from the abdominal gland opening into the mouth.

If fungal spores have already germinated on a pupa and the fungus has penetrated the cuticle, workers unpack the infected pupa from its cocoon, bite holes in the skin and inject formic acid. In this way, they prevent the fungus from growing and forming spores that will contaminate the rest of the colony. The pupa does not survive the treatment, but it would have been killed by the fungus anyway.

Crop acidity

Now, a new application of formic acid comes to light: Formicinae ants swallow their own formic acid after eating or drinking something. Tragust deduces this from tests in the lab with Florida carpenter ant, Camponotus floridanus. He offered ants honey water or plain water and saw them lick their abdominal tip afterwards. Apparently, they then took up acid into the mouth and swallowed it, as Tragust showed that the contents of their crop, just before the stomach, became very acidic.

Perhaps, the idea was, workers take formic acid to kill bacteria that may be present on food. And that was the case, as became clear from tests in which workers were given food that was contaminated with a pathogenic bacterium species (Serratia marcescens). In ants that then took a gulp of formic acid, bacteria did not survive the crop environment and the rest of the intestinal system remained clean. Ants that were prevented from taking in acid, were at greater risk of a deadly infection.

Only bacteria that thrive in acidic environments survive the acidic crop, and such bacteria populate the ants’ intestines. But these are beneficial bacteria that help digest food. The acid appears to be an excellent remedy against pathogenic microbes.

Fortunately, we don’t have to take an extremely sour dessert like Formicinae ants, because our stomach keeps itself acidic.

Willy van Strien

Photo: Carpenter ant, Camponotus cf. nicobarensis. ©Simon Tragust

Ants also use formic acid to keep fungus out of nest

Sources:
Tragust, S., C. Herrmann, J. Häfner, R. Braasch, C. Tilgen, M. Hoock, M.A. Milidakis, R. Gross & H. Feldhaar, 2020. Formicine ants swallow their highly acidic poison for gut microbial selection and control. eLife 9: e60287. Doi: 10.7554/eLife.60287
Pull, C.D., L.V. Ugelvig, F. Wiesenhofer, A.V. Grasse, S. Tragust, T. Schmitt, M.J.F. Brown & S. Cremer, 2018. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies. eLife 7: e32073. Doi: 10.7554/eLife.32073
Tragust, S., B. Mitteregger, V. Barone, M. Konrad, L.V. Ugelvig & S. Cremer, 2013. Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Current Biology 23: 76-82. Doi: 10.1016/j.cub.2012.11.034

Saved by decoration

Bird doesn’t attack the spider, but its web decoration instead

Cyclosa monticola and its web decoration

Thanks to a striking web decoration, the spider Cyclosa monticola escapes from hungry birds, as Nina Ma and colleagues show. The birds’ attacks fail.

The spider Cyclosa monticola, which is common in East Asia, constructs an elaborate web. Not only does it consist of sticky threads, but it also carries a striking, linear band of trash, containing moults, prey remains, and pieces of leaves and stems. According to Nina Ma and colleagues, this detritus decoration diverts attacks of predators, especially birds, away from the spider.

The spider is in the centre of its web, hardly visible in the decoration band, which extends in both directions. The animal’s colour is similar to the colour of the decoration. Birds cannot distinguish the colours of the spider from that of decorating trash.

Fine scissors

The researchers wondered whether Cyclosa monticola, a tasty snack for many birds, is safer as a result. In order to find out, they exposed spider webs to domestic chickens chicks, one web per chick. Some chicks were given a web with the resident spider present in it; from half of these webs, the researchers had removed the decoration with fine scissors without damaging the web. For comparison, other chicks were given either an empty web or a web with decoration only. Most chicks quickly pecked at whatever (spider and/or decoration) they saw. The researchers were interested in their first target.

Spiders that had been robbed of their web decoration were grabbed by the chick in almost all cases. Spiders that had kept their decoration survived much more frequently. In this situation, the chick usually did not peck at the spider, but at the trash, and the spider dropped down quickly to escape. Obviously, the decoration did confer safety.

More attractive

Although the spider is hardly detectable among the decoration trash, the protection was not only due to camouflage, as the researchers argue. Because in that case, attacks would be random and the risk for the spider to get captured would be equal to its size relative to the size of the decoration. However, the chance of being captured was lower and independent of the size of the decoration band. Apparently, the detritus decoration is more attractive to birds to peck at and diverts their attention away from the spider.

So, web decoration is an effective defence strategy.

The question now is whether insect prey will not avoid the structure. After all, the trick of a spider web is that insects don’t discern the threads and get caught in the web. But research on another spider species that adorns its web shows that insects are attracted to the decoration – and get stuck in the web. The web decoration of Cyclosa monticola may also have this effect; if so, it would have a double function.

Willy van Strien

Photo: web with Cyclosa monticola and detritus decoration. ©Shichang Zhang

Sources:
Ma, N., L. Yu, D. Gong, Z. Hua, H. Zeng, L. Chen, A. Mao, Z. Chen, R. Cai, Y. Ma, Z. Zhang, D. Li, J. Luo & S. Zhang, 2020. Detritus decorations as the extended phenotype deflect avian predator attack increasing fitness in an orb‐web spider. Functional Ecology, online July 16. Doi: 10.1111/1365-2435.13636
Tan. E.J., S.W.H. Seah, L-M.Y.L. Yap, P.M. Goh, W. Gan, F. Liu & D. Li, 2010. Why do orb-weaving spiders (Cyclosa ginnaga) decorate their webs with silk spirals and plant detritus? Animal Behaviour 79: 179-186. Doi: 10.1016/j.anbehav.2009.10.025

Attractive dark eyes

Thanks to black irises, female guppy escapes from predator

Guppy female blackens eyes when in danger

By drawing the attention of a predatory fish to the eyes and turning the head away as soon as it strikes, a guppy female manages to evade. Robert Heathcote and colleagues report this hitherto unknown escape strategy.

When Trinidadian guppies detect a predatory fish, they will approach and inspect it to find out if it is hungry and dangerous. The colour of their irises may change when they do; normally the irises are silver, but then they often turn black, making the eyes more salient. It doesn’t seem profitable to draw an enemies attention to the head, so Robert Heathcote and colleagues wondered why guppies blacken their eyes. Is it to deter the enemy? Or is it to divert its attack? But then, how does it work?

By conducting a series of experiments, they found the answer: the colour change is part of a successful escape strategy.

Wild Trinidadian guppies, Poecilia reticulata, live in northeastern South America. One of their enemies is the cichlid Crenicichla alta, a predatory fish that ambushes its victims.

First, the researchers exposed wild guppies to a visually-realistic model of this predatory fish in a tank, and observed whether they blackened their eyes. As it turned out, large individuals do. These are mostly females, which are larger than males on average.

Attack

The predatory fish is not deterred by those dark eyes, as became evident from the next series of experiments, this time with live predatory fish and models of guppies with either black or silver irises. The cichlid attacks guppies with black eyes as often as those with silver-coloured irises. So, the first possible explanation fails.

The researchers also investigated at what target the predator lunges when attacking its prey. When irises are silver-coloured, the predator aims at the broadest part of the body, they discovered. In dark-eyed fish, the attack is diverted to the front. So, colour change of the irises appears to be a diversion strategy. But the predatory fish grasps both types of models, with black and silver irises, just as easily, so a guppy doesn’t benefit from a dark eye colour in itself.

Matador

However, colour change does help when combined with a critically timed evasive manoeuvre, as the last tests showed. In these tests, living guppies were placed in a tank with a living cichlid, but were separated from it by a transparent acetate screen, keeping them from danger. From the movements of the fish, filmed with a high-speed camera, the researchers were able to calculate, for each attack, the probability that the predator would have caught the victim in real conditions, without screen.

The moment the predatory fish strikes, a guppy quickly pivots around an imaginary vertical axis, accelerates and swims away. The imaginary axis runs through the broadest part of the body (more precisely, through the centre of mass), roughly the point that the cichlid aims for in a victim with silvery, less conspicuous irises. This part of the body hardly moves during the rotation. If the predatory fish directs its attack at that point, its chances to succeed are high, as the analysis showed.

The head, on the other hand, immediately leaves its position during the rotational movement. If the predatory fish charges at that part of the victim – like it does in a prey with black irises – it usually misses out.

By blackening its eyes, a guppy thus increases its chance to escape with a quick manoeuvre. The researchers compare this escape strategy – drawing the enemy’s attention to a particular point and then moving it quickly away – with the behaviour of a bullfighter, the matador with his red cape. Such escape strategy was previously unknown in animals.

Only females

For the strategy to be successful, the distance between the eye and the broadest part of the body must be sufficiently large. Males are too small. Males also have a striking eye-sized black spot on their body, which makes it more difficult to draw the predator’s attention to the head. So it makes no sense for males to blacken their irises in presence of a predatory fish, just increasing the detection risk. Accordingly, they don’t.

But females can trick their enemies by making their eyes stand out. The predator aims for her attractive eyes. And they’re gone.

Willy van Strien

Photo: Guppy, Poecilia reticulata, female with silver iris. H. Krisp (Wikimedia Commons, Creative Commons, CC BY 3.0)

Source:
Heathcote, R.J.P., J. Troscianko, S.K. Darden, L.C. Naisbett-Jones, P.R. Laker, A.M. Brown, I.W. Ramnarine, J. Walker & D.P., 2020. A matador-like predator diversion strategy driven by conspicuous coloration in guppies. Current Biology, online June 11. Doi: 10.1016/j.cub.2020.05.017

Expensive defence

Ladybird cannot deal with all enemies at once

Harlequin ladybird cannot resist all enemies at once

When a ladybird has to defer predators regularly, it is less able to resist pathogens and parasites, Michal Knapp and colleagues write.

When threatened, ladybird beetles try to avoid being eaten by excreting a yellow, smelly and bitter-tasting liquid from their legs. This reduces the appetite of hungry insects, lizards, birds or small mammals. The liquid is haemolymph, the insect variant of blood. You can see the phenomenon by provoking a ladybird.

But you shouldn’t do that, because ‘reflex bleeding’ decreases the ability to fight pathogens and parasites, as Michal Knapp and colleagues report.

They conducted experiments with the harlequin ladybird, Harmonia axyridis. The species originally lived in East Asia, was introduced in Europe and North America and nowadays also occurs in South America and Africa.

Precious blood

Haemolymph is an expensive means to scare away enemies. It contains nutrients, as well as blood cells, proteins and other compounds that ladybirds need to eliminate pathogens and parasites. The harlequin ladybird uses, among other compounds, the substance harmonine, which has a strong antimicrobial effect. Each bleeding causes a loss of these valuable components.

To measure the effect of this loss, Knapp triggered reflex bleeding in ladybirds twice a week, during three weeks. Contrary to his expectations, the treatment did not affect the survival of the beetles, and they did not lose weight.

He also, during a month, triggered newly hatched females daily to bleed, and found that their reproductive capacity was unaffected. In their first month of life, they produced as many eggs as females that were untreated. They started laying eggs a few days later, though, especially after losing a high volume of haemolymph. That may be of little importance, however, as the beetles live for months.

Costs

But bleeding, the defence mechanism against predators, comes at the expense of the resistance to other enemies, as it turned out. The concentration of blood cells and proteins in haemolymph had decreased. The concentration of harmonine and similar compounds has not been measured, but other research indicates that it also will have decreased.

Indeed, haemolymph of ladybirds that bled was found to inhibit bacteria less strongly. Probably, these ladybirds are less resistant to parasites as well, as blood cells take part in defence, but this has not been investigated.

Ladybirds successfully deploy constituents of haemolymph against all types of enemies – but they cannot fight them all at once at full power. If they have to deal with hungry predators frequently, their resistance to pathogens and parasites is reduced.

Willy van Strien

Photo: Harlequin ladybird, Harmonia axyridis. Timku (via Flickr, Creative Commons CC BY-NC-SA 2.0)

Source:
Knapp. M., M. Řeřicha & D. Židlická, 2020. Physiological costs of chemical defence: repeated reflex bleeding weakens the immune system and postpones reproduction in a ladybird beetle. Scientific Reports 10: 9266. Doi: 10.1038/s41598-020-66157-9

Synchronous calling for safety reasons

Pug-nosed tree frog male refrains from calling first

pug-nosed tree frog males call almost synchronously

As soon as a pug-nosed tree frog male starts calling, other males in the neighbourhood follow suit. After a short time of noise, it is quiet again for a long period. Henry Legett and colleagues found an explanation for this pattern.

In pug-nosed tree frog, aka Panama cross-banded tree frog (Smilisca sila), males face a difficult dilemma. The frog lives in Central America. In order to reproduce, males have to attract a female by calling, which they do in the evening from a location along or above a water stream. But their calls reveal their presence not only to females, but also to their natural enemies, the fringe-lipped bat (Trachops cirrhosus) and midges. The enemies use sound to localise their victims.

According to Henry Legett and colleagues, the frog males reduce the risk by creating an auditory illusion in their enemies.

That illusion arises by the way in which animals, including humans, process sound. If, with a short interval (milliseconds), two or more identical sounds are produced by sources that are close to each other, we will perceive this as one sound, which originated at the source that uttered it first. So, we ignore reflections that occur in a furnished room or a forest, hearing sounds clearly as a consequence. The priority given to the first sound is called the precedence effect.

Followers

fringe-lipped bat is susceptible for auditory illusionBecause of this effect, pug-nosed tree frog males that call nearly synchronously with another male, can hide from their enemies’ ears. And, according to playback experiments by the researchers, this works out pretty well. They used two speakers that almost simultaneously produced the call of a male; alternately, one or the other speaker was leading. The response of bats, midges and female frogs was observed.

As results suggest, a male that closely follows another male calling runs a smaller risk of being captured by a bat and attracts less mosquitoes than the predecessor.

So following pays off – at least as far as safety is concerned. But what about reproduction? If females also have more difficulty finding followers, males won’t benefit from auditory hiding.

But as it turns out, chances are not too bad. The precedence effect is strong in other frog species, such as the túngara frog (Engystomops pustulosus), which inhabits the same region and whose males also call at night, but not synchronously. Compared to túngara frog females, the effect is weak in pug-nosed tree frog females. They chose following males less often than predecessors, but the difference is small. Also followers are approached by females.

Silence

The question remains why any tree frog male is the first to start the synchronous calling. After all, being the predecessor, its attractive power to females is only a bit stronger, while it is more likely to be eaten and bitten.

On the other hand, someone has to do it. If all males would remain silent, nothing happens. But the restraint of males to be the first explains the long periods of silence, interspersed with short, sporadic bouts of calls.

Willy van Strien

Photos:
Large: Pug-nosed tree frog Smilisca sila. Brian Gratwicke (Wikimedia Commons, Creative Commons CC BY 2.0)
Samll: fringe-lipped bat. Karin Schneeberger alias Felineora (Wikimedia Commons, Creative Commons CC BY 3.0)

Sources:
Legett, H.D., C.T. Hemingway & X.E. Bernal, 2020. Prey exploits the auditory illusions of eavesdropping predators. The American Naturalist 195: 927-933. Doi: 10.1086/707719
Tuttle, M.D. & M.J. Ryan, 1982. The role of synchronized calling, ambient light, and ambient noise, in anti-bat-predator behavior of a treefrog. Behavioral Ecology and Sociobiology 11: 125-131. Doi: 10.1007/BF00300101