Evolution and Biodiversity

Category: mutualism (Page 3 of 3)

Good friend

Sea anemone grows better with a shy clownfish around

shy clownfish is better partner

The strength of the mutualistic interactions between sea anemones and clownfish depends on the personality of the fish, Philip Schmiege and colleagues report. A shy, cautious partner benefits a sea anemone more than a bold, venturous fish.

Clownfish (also called anemonefish) are safe between the tentacles of sea anemones. The anemones, animals related to jellyfish, hold off the clownfish’s predators with their stinging, toxic nematocysts. The clownfish are insensitive to these cells. Conversely, clownfish chase and bite guests who intend to nibble at the tentacles with which the sea anemones gather their food. So, sea anemones and clownfish are partners that protect each other.

Fertilize and refresh

But the fish deliver extra services. Many sea anemones harbour unicellular microorganisms that, like plants, are able to capture sunlight and to use it to convert carbon dioxide into carbohydrates. They feed these carbohydrates to the anemones in exchange for residence. The microorganisms derive their nutrients from waste products of the clownfish. Moreover, by moving, the fish refresh the water around the sea anemones continuously, guaranteeing the availability of oxygen. By fertilizing the unicellular inhabitants and refreshing the water, clownfish promote the growth of sea anemones.

Now, clownfish, like many other animal species, have personalities. There are bold, venturous individuals as well as shy, passive ones. It matters to the sea anemones what personality the fishes have that associate with them, Philip Schmiege and colleagues assumed. And they proved to be right.

The researchers brought some wild-caught orange clownfish (or clown anemonefish, Amphiprion percula) into the lab, a species living along coasts of Australia, Asia and Japan. Also, they had grown bubble-tip anemones (Entacmaea quadricolor). Though this is not a natural partner of the fish, they associate readily in the lab.

In each of sixty tanks, the researchers placed one anemone and one or two fish; in the field, zero to six fish associate with one anemone. They measured the size of the anemones and kept track of their growth. Also, they examined how bold or shy each fish was by videotaping its activities every day during twenty minutes and assessing from the footage if he ventured away from the sea anemone. The more time a fish spent away from his partner, the bolder its personality.

Shy fish

After eighteen months, the biologists noted a difference in the growth of the sea anemones. Anemones associated with a shy fish had grown better than anemones with a bold partner. Apparently, shy fish supply better services. Because they remain in close proximity to their host anemone, they fertilize its unicellular inhabitants better and refresh the water more efficiently. And perhaps the anemones dare to expand their tentacles for longer periods of time to catch food as long as there is a clownfish nearby.

In conclusion: the strength of mutualistic relationships, of which the association between sea anemones and clownfish is an iconic example, depends on the personality of the partners.

Willy van Strien

Photo: Orange clownfish © Philip Schmiege

Source:
Schmiege, P.F.P., C.C. D’Aloia, P.M. Buston, 2017. Anemonefish personalities influence the strength of mutualistic interactions with host sea anemones. Marine Biology 164: 24. Doi: 10.1007/s00227-016-3053-1

Mini garden

Some arboreal ants grow useful plants

A Squamellaria major plant on macaranga, grown by ants

Gardening is an art – and there are ants that master this art. On the branches of trees they cultivate plants to live in or to strengthen their nests, as research teams of Guillaume Chomicki and Jonas Morales-Linares report.

Many ants and plants are partners in a mutualism: the plants provide the ants with a place to live or with nectar, and the ants deposit their droppings as fertilizer or protect the plants from herbivorous insects. Some tropical arboreal ants go a step further and cultivate the plants they live with. As these plants grow upon tree branches (they are epiphytes), it is more difficult for them to obtain nutrients than it is for plants that root in the soil, so the ant-plant mutualism is a good strategy. Many of the ant-grown plants are completely domesticated and would perish without the ants.

Seed collection

Philidris nagasau, native to Fiji, inhabits the hollow stems of Squamellaria species, bulb-shaped plants that grow on trees. The ants live nowhere else, and six Squamellaria species are always inhabited by these residents. The ant fertilizes the plants, as Guillaume Chomicki and colleagues had previously shown.

workers of Philidris nagasau inspect seedlings of SquamellariaNow, they discovered that the ant makes sure that plants are available by farming them. The researchers observed ant workers collecting exclusively the seeds of these six Squamellaria-species, and not those of any other species. They take them out of the unripe fruits, insert them in fissures and cracks in the bark of a tree and patrol the planting sites. Soon after, the seeds germinate and seedlings appear on the tree, and as soon as they form a cavity, a few ants will enter it, likely to leave their droppings. By doing so, they grow the plants they need to live in.

So, this ant-plant mutualism is more intimate than previously thought. The plants need the ant partner not only for nutrition, but also for seed dispersal.

Beautiful flowers

A different kind of plant nurseries can be found in Central and South America: conspicuous little gardens that hang from some trees. They are the overgrown carton nests of certain ant species. The ants collect seeds of epiphytes and insert them in the walls of their nest, where of the seeds germinate and grow up. The plant roots strengthen the nest and take up water when it rains, so that the nests don’t disintegrate. In return, the ants fertilize the plants and protect them against herbivorous insects. Some plants are exclusively dispersed by the ants and only germinate in an ant nest.

Hanging garden of Azreca gnavaAzteca gnava from southern Mexico and Panama is such a gardening ant. His gardens are frequently found in plantations, as Jonas Morales-Linares and colleagues report, mostly on cocoa, mango, sapote and orange trees. The gardens contain twelve plants on average, typically of two or three different species. Two plant species that cannot live outside these gardens are the bromeliad Aechmea tillandsioides and the orchid Coryanthes picturata. Apparently, the gardening ants have a good taste, for these plants have beautiful flowers.

Three million years

The ant Camponotus femoratus of the Amazonian lowland forest plants similar gardens. Mutualism is obligate for the plant Peperomia macrostachya, that only lives in the nests of this ant. Elsa Youngsteadt and colleagues showed that Camponotus femoratus is the only ant species to collect the seeds of this plant. The ant takes them from the plant, from the soil or from the feces of birds and mammals that have eaten the fruits. Probably, the seeds emit volatiles that only only Camponotus femoratus appreciates. The ant inserts many Peperomia seeds in the walls of its nest. Each seed has only a small chance to germinate there, but the seeds that are not brought into the ant’s nests have no chance to sprout at all.

According to Chomicki, Philidris nagasau in Fiji descends from ancestors that, just like their American colleagues, made carton nests in trees and planted seeds in the wall. But at some time, Philidris nagasau stopped making nests and planted the seeds in the bark instead; at roughly the same time Squamellaria species developed the hollow, bulbous stems that can house the ants. So, ant and plants co-evolved; their co-evolution started about three million years ago.

Willy van Strien

Photo’s:
Large: a Squamellaria major plant, grown by ants on macaranga. © Guillaume Chomicki
Small 1: workers of Philidris nagasau inspecting seedlings. © Guillaume Chomicki
Small 2: hanging garden of Azteca gnava. © Jonas Morales-Linares

Sources:
Chomicki, G. & S.S. Renner, 2016. Obligate plant farming by a specialized ant. Nature Plants 2: 16181. Doi: 10.1038/nplants.2016.181
Chomicki, G., Y.M. Staedler, J. Schönenberger & S.S. Renner, 2016. Partner choice through concealed floral sugar rewards evolved with the specialization of ant-plant mutualisms. New Phytologist, online May 9. Doi: 10.1111/nph.13990
Morales-Linares, J., J.G. García-Franco, A. Flores-Palacios, J.E. Valenzuela-González, M. Mata-Rosas & C. Díaz-Castelazo, 2016. Vascular epiphytes and host trees of ant-gardens in an anthropic landscape in southeastern Mexico. The Science of Nature 103: 96. Doi: 10.1007/s00114-016-1421-9
Youngsteadt, E., J. Alvarez Baca, J. Osborne & C. Schal, 2009. Species-specific seed dispersal in an obligate ant-plant mutualism. PLoS ONE 4: e4335. Doi: 10.1371/journal.pone.0004335

Newer posts »