Evolutie en Biodiversiteit

Categorie: verdediging (Pagina 2 van 7)

Bubbel op de kop

Duikende wateranolis gebruikt uitgeademde lucht opnieuw

Wateranolis hergebruikt uitgeademde lucht

Sommige Anolis-hagedissoorten kunnen een tijd onder water blijven zonder te verdrinken. Dankzij een laag lucht om hun waterafstotende huid blijven ze ademhalen, schrijven Chris Boccia en collega’s.

De wateranolis, Anolis aquaticus, is geen snelle hagedis. Maar aan een roofvijand, zoals een grotere hagedis, slang of vogel, weet hij vaak toch te ontkomen. Bij gevaar plonst hij namelijk het water in om uit het zicht te zijn. Hoewel hij soms pas na een kwartier weer opduikt, komt hij niet in ademnood. Want hij weet de lucht die hij bij zich heeft ten volle te benutten, laten Chris Boccia en collega’s zien.

De wateranolis uit Costa Rica is een van ruim 400 Anolis-hagedissoorten, die in tropisch Amerika voorkomen. Sommige soorten, waaronder deze, leven bij water en duiken regelmatig onder. De onderzoekers bestudeerden hoe deze semi-aquatische soorten zich onder water redden en hoe ze daarin verschillen van soorten die altijd op het droge blijven.

Alle Anolis-soorten blijken een sterk waterafstotende huid te hebben. Raken ze te water, dan ontstaat een dun laagje lucht tussen water en huid rond het hele lichaam. Oftewel: ze worden niet nat, zoals andere hagedissen. Een gevolg daarvan is dat er geen luchtbelletjes naar het wateroppervlak borrelen om daar te ontsnappen als een anolis onder water uitademt, zoals bij andere dieren. In plaats daarvan wordt de uitgeademde lucht opgenomen in het luchtlaagje om het lichaam. Dat is te zien doordat zich bij de neusgaten een luchtbel vormt. Bij de wateranolis verschijnt die bubbel bovenop zijn kop.

Bubbel

Semi-aquatische soorten als de wateranolis gebruiken die vastgehouden lucht. Zij ademen hem weer in. En weer uit, en weer in, minstens vijf keer.

Hoe helpt dat?

Ademhalen is nodig om zuurstof vanuit de lucht in het bloed op te nemen en koolstofdioxide te verwijderen. Die uitwisseling gebeurt in de longen. Het koolstofdioxide dat een duikende anolis uitademt, lost vanuit de luchtbel goed op in het water. Dus dat afvalgas raakt hij kwijt.

Bovendien neemt hij bij elke ademhaling zuurstof uit de luchtbel op, laten de onderzoekers zien. De hoeveelheid zuurstof in de bubbel daalt namelijk langzaam. Mogelijk wordt de voorraad deels bijgevuld als de lucht die uit de longen komt en daar zuurstof heeft afgestaan, zich mengt met lucht die de longen niet passeerde: de luchtlaag rond de huid en lucht uit mond, neus en luchtpijp.

Geduld

En heel misschien werkt de luchtbel als een kieuw; misschien neemt hij zuurstof uit water op. Dat kan nooit genoeg zijn voor een langdurig verblijf onder water. Maar het kan misschien de maximale duiktijd verlengen. Een mogelijke aanwijzing voor die zuurstofaanvulling is, dat de hoeveelheid zuurstof in de luchtbel steeds wat langzamer afneemt. Maar dat kan ook komen doordat het dier de stofwisseling onder water op een lager pitje zet en zodoende minder zuurstof verbruikt.

‘Droge’ Anolis-soorten hergebruiken uitgeademde lucht af en toe als ze onder water geraken, maar zij doen dat niet routinematig en niet zo langdurig als de wateranolis en andere semi-aquatische soorten – die het moeten zien vol te houden tot het geduld van de gevreesde roofvijand op is.

Willy van Strien

Foto: ondergedoken wateranolis met bubbel op zijn snuit. ©Lindsey Swierk

Op You Tube laten de onderzoekers het zien: hier en hier

Bron:
Boccia, C.K., L. Swierk, F.P. Ayala-Varela, J. Boccia, I.L. Borges, C.A. Estupiñán, A.M. Martin, R.E. Martínez-Grimaldo, S. Ovalle, S. Senthivasan, K.S. Toyama, M. del Rosario Castañeda, A. García, R.E. Glor & D.L. Mahler, 2021. Repeated evolution of underwater rebreathing in diving Anolis lizards. Current Biology, 12 mei online. Doi: 10.1016/j.cub.2021.04.040

Hoornaars maken rechtsomkeert

Aziatische honingbij ontmoedigt zijn vijand

Hoornaars jagen op Aziatische honingbij

Hoornaars zijn gevaarlijke roofvijanden van de Aziatische honingbij. Die probeert het gevaar af te wenden . Dat kan door naderende hoornaars te laten weten dat ze zijn gezien, zoals Shihao Dong en collega’s beschrijven, of door de nestingang met poep te beplakken, zoals Heather Mattila en collega’s laten zien.

De Aziatische honingbij, Apis cerana, heeft veel meer met gevaarlijke hoornaars te maken dan de Europese honingbij. Zo’n grote wesp met sterke kaken en giftige angel kan voor een kolonie van honingbijen hangen en foeragerende bijenwerksters uit de lucht plukken om op te eten.

En erger: hoornaars kunnen ook in groepen opereren, een bijennest binnengaan, alle volwassen bijen die niet op de vlucht slaan doden en bezit nemen van de larven en poppen. Die brengen ze naar hun eigen nest om aan hun eigen nakomelingen te voeren. Net als honingbijen leven hoornaars in sociale groepen met een koningin die eitjes legt en werksters die haar nakomelingen verzorgen.

Kortom: bezoek van hoornaars is iets wat bijen beslist niet moeten hebben.

Aziatische honingbijen hebben dan ook verschillende verdedigingsmechanismen ontwikkeld. De bijen laten een hoornaar die naderbij komt weten dat ze klaar staan om zich te verdedigen, schrijven Shihao Dong en collega’s. Een verrassingsaanval zit er dan niet in. Of ze smeren dierenpoep om de ingang van hun nest om de vijand af te schrikken, laten Heather Mattila en collega’s zien.

Gezien

Hoornaars zijn vooral in de herfst gevaarlijk, als het broed veel dierlijk voedsel nodig heeft.

Een hoornaar die een kolonie van Aziatische honingbijen vindt, kan niet zomaar naar binnen. Want de nestingang is te klein en wordt bewaakt door bijenwachters die hun nestgenoten kunnen alarmeren. Maar de hoornaar kan een chemisch geurmerk bij het nest aanbrengen en daarmee tientallen collega’s rekruteren, die gezamenlijk de nestopening met hun kaken vergroten en binnenvallen. Dat moeten de bijen zien te vermijden. Ze moeten die eerste hoornaar, de verkenner, afschrikken en een groepsaanval voorkómen.

Dat kan door zo’n hoornaar te laten merken dat ze gezien is, zoals Aziatische honingbijen in China doen. Als een Aziatische hoornaar, Vespa velutina, het nest nadert, zwaaien de bijenwachten met hun achterlijf. Andere wachters nemen deze beweging over, zelfs als ze de hoornaar niet met eigen ogen zien, en het gedrag trekt meer bijenwachters aan. Hoe dichterbij de hoornaar komt of hoe sneller zij vliegt, hoe sneller de zwaaibeweging wordt, tot meer dan 30 zwiepen per minuut.

Aziatische honingbijen doden hoornaars in hittebalHet schrikt de hoornaar af. Want als de bijen haar bijtijds in de gaten hebben, kunnen ze haar aanvallen en doden, zo was al bekend. Met een dichte bal van tientallen of honderden bijen sluiten ze haar in. De bijen laten hun vliegspieren trillen, zodat de temperatuur in de bal oploopt tot zo’n 47°C, een temperatuur die de bijen zelf nog net kunnen verdragen, en het gehalte aan koolstofdioxide stijgt. De hoornaar bezwijkt.

Maar het is beter als het zo ver niet komt, want het kost veel tijd en energie om een hoornaar in zo’n hittebal te doden. Niet alle bijen overleven de actie. Vandaar dat de bijen eerst proberen te vijand te ontmoedigen.

Bekakt

De Aziatische hoornaar is een kleine soort, en niet de gevaarlijkste voor de Aziatische honingbij. Hij voert geen groepsaanval uit en gaat geen bijennesten binnen. Bedreigender zijn de Aziatische reuzenhoornaar, Vespa mandarinia, en de daaraan verwante Vespa soror.

Om de grotere hoornaars te ontmoedigen, doen de Aziatische honingbijen wat meer moeite dan voor de kleine soort, zo lijkt het. In Vietnam weten ze de grote hoornaar Vespa soror van hun nest weg te houden door hoopjes dierenpoep rond de nestingang aan te brengen. Als werksters een hoornaar of haar chemische geurmerk opmerken, zoeken ze een hoop stront, halen er met hun monddelen een klontje vanaf, dragen dat naar het nest en plakken het bij de ingang. Ze doen dat niet als ze de kleinere Aziatische hoornaar, Vespa velutina, bij hun nest ontdekken.

Een bekakte ingang werkt afwerend: hoornaars gaan sneller weg en zijn minder geneigd om op het nest te landen en de ingang open te werken. De onderzoekers weten nog niet precies waarom de poep afwerend werkt.

Geurmerk gemaskeerd

In het noorden van Japan smeren de honingbijen een prutje van gekauwde plantenbladeren om de ingang van hun nest als ze een Aziatische reuzenhoornaar hebben gesignaleerd, bleek uit onderzoek van Ayumi Fujiwara. Het zou goed kunnen zijn dat de geur van het goedje het chemische geurmerk van de hoornaar maskeert. En misschien doet stinkende poep dat ook wel.

Willy van Strien

Foto’s:
Groot: Japanse gele hoornaar, Vespa simillima xanthoptera, bij nest van Aziatische honingbij, Apis cerana. Takahashi (Wikimedia Commons, Creative Commons CC BY-SA 2.1 JP)
Klein: Aziatische honingbijen vormen een hittebal rondom twee hoornaars. Takahashi (Wikimedia Commons, Creative Commons CC BY-SA 2.1 JP)

Bronnen:
Dong, S., K. Tan & J.C. Nieh, 2020. Visual contagion in prey defence signals can enhance honest defence. Journal of Animal Ecology, 20 november online. Doi: 10.1111/1365-2656.13390
Mattila, H.R., G.W. Otis, L.T.P. Nguyen, H.D. Pham, O.M. Knight & N.T. Phan, 2020. Honey bees (Apis cerana) use animal feces as a tool to defend colonies against group attack by giant hornets (Vespa soror). PLoS ONE 15(12): e0242668. Doi: 10.1371/journal.pone.0242668
Fujiwara, A., M. Sasaki & I. Washitani, 2016. A scientific note on hive entrance smearing in Japanese Apis cerana induced by pre-mass attack scouting by the Asian giant hornet Vespa mandarinia. Apidologie 47: 789-791. Doi: 10.1007/s13592-016-0432-z
Tan, K., Z. Wang, H. Li, S. Yang, Z. Hu, G. Kastberger & B.P. Oldroyd, 2012. An ‘I see you’ prey-predator signal between the Asian honeybee, Apis cerana, and the hornet, Vespa velutina. Animal Behaviour 83: 879-882. Doi: 10.1016/j.anbehav.2011.12.031

Zuur na het zoet

Mier slikt eigen mierenzuur om gezond te blijven

mierenzuur houdt schubmier gezond

Mierenzuur blijkt voor mieren een prima middel te zijn om een infectie door besmet voedsel te voorkómen, ontdekten Simon Tragust en collega’s. Een slok zuur na consumptie verhoogt de overlevingskans.

Mensen houden van zoete toetjes, maar voor schubmieren (Formicinae) geldt juist: na het zoet komt het zuur. Zij nemen een slok mierenzuur als ze wat gegeten of gedronken hebben, zagen Simon Tragust en collega’s.

Dat is opmerkelijk, want mierenzuur is een agressief, bijtend goedje. Schubmieren maken het aan in een gifklier die een opening heeft aan het eind van het achterlijf. Bekend was dat ze het ter verdediging naar roofvijanden spuiten, zoals vogels, spinnen en insecten, en dat is begrijpelijk. Maar inslikken?

Desinfecteren

Tragust en collega’s hadden eerder al laten zien dat schubmieren hun zuur niet alleen inzetten tegen roofvijanden, maar ook tegen ziekteverwekkers. Werksters gebruiken het in combinatie met hars om een ziekteverwekkende schimmel (Metarhizium brunneum) uit hun nest houden.

Daarnaast houden ze het broed met mierenzuur schoon. Ontdekken ze poppen die met sporen van de ziekteverwekkende schimmel zijn bedekt, dan maken ze die schoon en verspreiden ze er mierenzuur over, dat ze dat vanuit de klieropening in het achterlijf in de mond genomen hebben.

Zijn er toch al schimmelsporen op een pop ontkiemd en is de schimmel binnengedrongen, dan halen werksters de geïnfecteerde pop uit de cocon waarin hij zit, maken gaatjes in de huid en brengen daardoor mierenzuur in. Dan kan de schimmel niet meer doorgroeien en sporen vormen die de rest van de kolonie besmetten. De pop overleeft de behandeling niet, maar zou anders aan de schimmel te gronde zijn gegaan.

Zure krop

Nu komt dus een nieuwe toepassing van mierenzuur aan het licht: schubmieren slikken hun eigen mierenzuur in als ze iets gegeten of gedronken hebben. Tragust leidt dat af uit proeven in het lab met schubmier Camponotus floridanus. Hij gaf mieren honingwater of gewoon water en zag dat ze daarna aan hun achterlijf likten. Kennelijk namen ze dan zuur in de mondholte op en slikten het door, want Tragust liet zien dat de inhoud van hun krop, net voor de maag, daarna heel erg zuur werd.

Misschien, was het idee, slikken werksters mierenzuur om bacteriën te doden die op voedsel aanwezig kunnen zijn. En dat klopte, bleek uit proeven waarbij werksters voedsel kregen dat met een ziekteverwekkende bacterie (Serratia marcescens) was besmet. Bij mieren die daarna een slok mierenzuur namen, overleefde die bacterie het verblijf in de krop niet en bleef de rest van het darmstelsel schoon. Mieren die verhinderd werden om zuur op te nemen, liepen een groter risico op een dodelijke infectie.

Alleen bacteriën die in een zure omgeving gedijen overleven een zure krop, en zulke bacteriën bevolken dan ook de mierendarm. Maar dat zijn gunstige bacteriën, die helpen het voedsel te verteren.

Het zuur werkt dus uitstekend tegen ziekteverwekkende microben. Gelukkig hoeven wij niet zoals schubmieren een uiterst zuur toetje te nemen, want onze maag houdt zichzelf zuur.

Willy van Strien

Foto: Schubmier Camponotus cf. nicobarensis. ©Simon Tragust

Mieren gebruiken mierenzuur ook om hun nest schimmelvrij te houden

Bronnen:
Tragust, S., C. Herrmann, J. Häfner, R. Braasch, C. Tilgen, M. Hoock, M.A. Milidakis, R. Gross & H. Feldhaar, 2020. Formicine ants swallow their highly acidic poison for gut microbial selection and control. eLife 9: e60287. Doi: 10.7554/eLife.60287
Pull, C.D., L.V. Ugelvig, F. Wiesenhofer, A.V. Grasse, S. Tragust, T. Schmitt, M.J.F. Brown & S. Cremer, 2018. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies. eLife 7: e32073. Doi: 10.7554/eLife.32073
Tragust, S., B. Mitteregger, V. Barone, M. Konrad, L.V. Ugelvig & S. Cremer, 2013. Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Current Biology 23: 76-82. Doi: 10.1016/j.cub.2012.11.034

Levensreddende versiering

Vogel pikt niet naar de spin, maar naar zijn webdecoratie

Spin Cyclosa monticola en zijn webdecoratie

Dankzij een opvallende decoratie in zijn web ontsnapt de spin Cyclosa monticola aan hongerige vogels, laten Nina Ma en collega’s zien. De vogels grijpen mis.

De spin Cyclosa monticola, die algemeen voorkomt in Oost Azië, maakt veel werk van zijn web. Het bestaat niet alleen uit kleverige draden, maar draagt ook een opvallende, rechtlijnige band van rommeltjes. Er zijn vervellingshuidjes, prooiresten, stukjes blad en steeltjes in verwerkt. Volgens Nina Ma en collega’s leidt deze versiering met afval roofvijanden af, met name vogels, zodat ze niet naar de spin pikken.

De spin zit midden in het web, de decoratieband strekt zich vanaf die plek naar twee kanten uit. De webeigenaar valt bijna niet op, want de kleur van het beestje komt overeen met de kleur van de decoratie. Vogels kunnen de kleuren niet van elkaar onderscheiden.

Schaartje

De onderzoekers vroegen zich af of Cyclosa monticola, een lekker hapje voor veel vogels, daardoor veiliger is. Om daar achter te komen lieten ze kippenkuikens los bij spinnenwebben, per kuiken één web. Sommige kuikens kregen een web met de bewoner erin; uit de helft van deze webben hadden de onderzoekers met een fijn schaartje de decoratie weggeknipt zonder het web te beschadigen. Andere kuikens kregen, ter vergelijking, ofwel een leeg web, ofwel een web met alleen een decoratie. De meeste kuikens pikten snel naar een web waarin iets (spin en/of decoratie) te zien was. De onderzoekers waren geïnteresseerd in hun eerste doelwit.

Spinnen die van hun webversiering waren beroofd, werden bijna altijd door het kuiken gepakt. Maar spinnen die hun decoratie hadden mogen behouden, ontsprongen meestal de dans. Het kuiken pikte dan niet naar de spin, maar naar de rommeltjes, en de spin liet zich snel vallen om te ontsnappen. De versiering zorgde inderdaad voor veiligheid.

Aantrekkelijker

Hoewel de spin niet opvalt in de afval-versiering, was die bescherming niet alleen te danken aan camouflage, beredeneren de onderzoekers. Want dan zouden de kuikens naar een willekeurige plek pikken en zou het risico voor de spin om gepakt te worden gelijk zijn aan zijn afmeting ten opzichte van die van de versiering. Maar de werkelijke pakkans was lager en onafhankelijk van de grootte van de decoratieband. Die is kennelijk aantrekkelijker voor vogels om naar te pikken en leidt hun aandacht weg van de spin.

De webdecoratie vormt dus een effectieve verdediging.

Nu is nog de vraag of prooi-insecten niet met een bocht om het bouwwerkje heen vliegen. De truc van een spinnenweb is immers dat insecten er in vliegen omdat ze de draden niet zien. Maar uit onderzoek aan een andere soort spin die zijn web versiert, blijkt dat insecten daar juist op af komen – en in het web blijven hangen. Misschien werkt de webdecoratie van Cyclosa monticola ook zo; dan zou hij een dubbele functie hebben.

Willy van Strien

Foto: web met Cyclosa monticola en versiering van afval. ©Shichang Zhang

Lees over de evolutie van het spinnenweb

Bronnen:
Ma, N., L. Yu, D. Gong, Z. Hua, H. Zeng, L. Chen, A. Mao, Z. Chen, R. Cai, Y. Ma, Z. Zhang, D. Li, J. Luo & S. Zhang, 2020. Detritus decorations as the extended phenotype deflect avian predator attack increasing fitness in an orb‐web spider. Functional Ecology, 16 juli online. Doi: 10.1111/1365-2435.13636
Tan. E.J., S.W.H. Seah, L-M.Y.L. Yap, P.M. Goh, W. Gan, F. Liu & D. Li, 2010. Why do orb-weaving spiders (Cyclosa ginnaga) decorate their webs with silk spirals and plant detritus? Animal Behaviour 79: 179-186. Doi: 10.1016/j.anbehav.2009.10.025

Op haar donkere ogen

Guppy-vrouwtje ontkomt aan roofvis dankzij zwarte irissen

Guppy-vrouwtje maakt haar irissen zwart bij gevaar

Door de aandacht van een roofvis op haar ogen te vestigen en haar kop razendsnel weg te draaien als hij een uitval doet, weet een guppy-vrouwtje te ontsnappen. Robert Heathcote en collega’s beschrijven hiermee een nog niet eerder ontdekte strategie.

Als guppy’s een roofvis zien, gaan ze op hem af om uit te vissen of hij hongerig is, en dus gevaarlijk. Dan kan de kleur van hun irissen, rond de pupil, veranderen; normaal zijn de irissen zilverkleurig, maar dan worden ze vaak zwart. De ogen vallen daardoor meer op. Het lijkt niet slim om zo de aandacht van een vijand op de kop te richten, dus Robert Heathcote en collega’s vroegen zich af waarom de visjes hun ogen zwart kleuren. Maken ze hun vijand daarmee bang? Of leiden ze zijn aanval af? Maar hoe werkt dat dan?
Door een serie experimenten uit te voeren, vonden ze het antwoord: de kleurverandering maakt deel uit van een succesvolle ontsnappingsstrategie.

Wilde guppy’s, Poecilia reticulata, leven in het noordoosten van Zuid-Amerika. Een van hun roofvijanden is de cichlide Crenicichla alta, een roofvis die zijn slachtoffers vanuit een hinderlaag aanvalt.

Eerst stelden de onderzoekers wilde guppy’s bloot aan een goed lijkend model van deze roofvis in een aquarium en keken of zij hun ogen zwart maakten. Dat doen vooral grote exemplaren, zo werd duidelijk. Over het algemeen zijn dat vrouwtjes, die gemiddeld groter zijn dan mannetjes.

Uitval

De roofvis schrikt niet terug voor die donkere ogen. Dat bleek uit volgende experimenten, dit keer met levende roofvissen en modellen van guppy’s met zwarte of zilverkleurige irissen. De cichlide valt guppy’s met zwarte irissen even vaak aan als visjes die zilverkleurige hebben. Dus de eerste mogelijke verklaring valt af.
De onderzoekers gingen ook na waar de roofvis zijn aanval op richt als hij uitvalt naar zijn prooi. Als de irissen zilverkleurig zijn, mikt hij op het dikste punt van het lijf, zo bleek. Bij vissen met donkere ogen is de aanval meer naar voren gericht. Kleurverandering van de irissen lijkt dus een afleidingsstrategie. Maar de roofvis kan beide typen modellen, met zwarte en met zilverkleurige irissen, even makkelijk te pakken krijgen. Aan een donkere oogkleur op zichzelf heeft een guppy blijkbaar niets.

Matador

De kleurverandering helpt echter wel in combinatie met een vluchtmanoeuvre op het juiste moment, zo lieten de laatste proeven zien. Hierbij werden levende guppy’s met een levende cichlide in een bak gezet, maar ze waren van hem gescheiden door een doorzichtig kunststof scherm, zodat ze geen gevaar liepen. Uit de bewegingen van de vissen, die werden gefilmd met een hogesnelheidscamera, konden de onderzoekers voor elke aanval berekenen hoe groot de kans was dat de roofvis het slachtoffer te pakken zou hebben gekregen in het echt, zonder scherm.

Op het moment dat de roofvis een uitval doet, draait een guppy razendsnel een kwartslag rondom een denkbeeldige verticale as en schiet weg. De denkbeeldige as loopt door het dikste punt van het lichaam (nauwkeuriger gezegd: door het zwaartepunt). Dat is ongeveer de plek waar de cichlide zich op richt bij een slachtoffer met zilverkleurige, minder opvallende irissen. Dit deel van het lijf blijft tijdens de draaibeweging ongeveer op dezelfde plek. Als de roofvis zijn aanval daarop richt, is er een grote kans dat hij succes heeft, bleek uit de analyse.
De kop daarentegen komt bij de draaibeweging meteen van zijn plaats. Als de roofvis daar op mikt – zoals hij doet bij een prooi met zwarte irissen – dan grijpt hij meestal mis.

Door zijn ogen zwart te maken, verhoogt een guppy dus de kans om met een snelle ontwijkingsmanoeuvre te ontkomen. De onderzoekers vergelijken deze ontsnappingsstrategie – de aandacht van de vijand op een punt richten en dat vervolgens snel verplaatsen – met het gedrag van een stierenvechter, de matador met zijn rode lap. Het is een ontsnappingsstrategie die nog niet van dieren bekend was.

Alleen vrouwtjes

De strategie heeft alleen succes als er voldoende afstand zit tussen oog en dikste lichaamsdeel. Mannetjes zijn te klein. Zij hebben bovendien een opvallende zwarte vlek op hun lijf die zo groot is als een oog, wat het moeilijker maakt om de aandacht van de roofvis naar de kop te leiden. Voor mannetjes heeft het dus geen zin om hun ogen zwart te kleuren in nabijheid van een roofvis, integendeel: ze zouden alleen maar extra opvallen. Zij doen dat dan ook niet.
Maar vrouwtjes kunnen hun vijanden te slim af zijn door hun ogen extra te laten opvallen. De roofvis mikt op haar donkere ogen. En weg zijn die.

Willy van Strien

Foto: Guppy, Poecilia reticulata, vrouwtje met zilverkleurige iris. H. Krisp (Wikimedia Commons, Creative Commons, CC BY 3.0)

Bron:
Heathcote, R.J.P., J. Troscianko, S.K. Darden, L.C. Naisbett-Jones, P.R. Laker, A.M. Brown, I.W. Ramnarine, J. Walker & D.P., 2020. A matador-like predator diversion strategy driven by conspicuous coloration in guppies. Current Biology, 11 juni online. Doi: 10.1016/j.cub.2020.05.017

Dure verdediging

Lieveheersbeestje kan niet alle vijanden tegelijk aan

Veelkleurig Aziatisch lieveheersbeestje kan zich niet verdedigen tegen alle vijanden tegelijk

Als een lieveheersbeestje zich regelmatig moet verweren tegen roofvijanden, is het minder goed in staat om ziekteverwekkers en parasieten te weerstaan, schrijven Michal Knapp en collega’s.

Bedreigde lieveheersbeestjes proberen te voorkomen dat ze worden opgegeten door een gele, stinkende en bitter smakende vloeistof te laten lekken uit hun pootgewrichten. Dat ontneemt hongerige insecten, hagedissen, vogels of kleine zoogdieren de lust om toe te happen. De vloeistof is hemolymfe, de insectenvariant van bloed. Je krijgt het ook te zien als je een lieveheersbeestje een klein beetje pest.
Maar doe dat liever niet. Want het ‘reflexbloeden’ gaat ten koste van het vermogen om andere vijanden te bestrijden, namelijk ziekteverwekkers en parasieten, melden Michal Knapp en collega’s.
Zij deden onderzoek aan het veelkleurig Aziatisch lieveheersbeestje, Harmonia axyridis. Dat leefde oorspronkelijk in Oost Azië, is ingevoerd in Europa en Noord Amerika en komt nu ook voor in Zuid Amerika en Afrika.

Kostbaar bloed

Hemolymfe is een ‘duur’ middel om vijanden weg te jagen. Het bevat voedingsstoffen, en er zitten bloedcellen, eiwitten en andere verbindingen in waarmee lieveheersbeestjes ziekteverwekkers en parasieten uitschakelen. Zo beschikt het veelkleurig Aziatisch lieveheersbeestje onder meer over de stof harmonine, dat een sterke antimicrobiële werking heeft. Elke bloeding betekent een verlies van deze waardevolle bestanddelen.

Om te zien hoe dat verlies uitpakt, lokte Knapp twee keer per week een reflexbloeding bij lieveheersbeestjes uit, drie weken lang. Tegen zijn verwachting in, had dat geen gevolgen voor de overlevingskans van de kevers en verloren ze er geen gewicht door.
Ook liet hij pas uitgekomen vrouwtjes gedurende een maand dagelijks refexbloeden, en constateerde dat hun voortplantingsvermogen onaangetast bleef. Ze legden in hun eerste levensmaand evenveel eitjes als vrouwtjes die met rust gelaten werden. Wel begonnen ze een paar dagen later met eitjes leggen, vooral als ze veel hemolymfe verloren. Dat hoeft echter geen probleem te zijn, want de kevers blijven maandenlang leven.

Inleveren

Maar bloed uitscheiden, als verdediging tegen roofvijanden, gaat wel ten koste van het afweervermogen tegen andere vijanden, zo bleek. Het gehalte aan bloedcellen en eiwitten in hemolymfe daalde na bloedingen. Het gehalte aan afweerstoffen als harmonine is niet gemeten, maar ander onderzoek wijst erop dat ook dat zal zijn afgenomen.

Hemolymfe van lieveheersbeestjes die gebloed hadden, bleek dan ook minder goed in staat te zijn om bacteriën te remmen. Waarschijnlijk hebben deze lieveheersbeestjes ook minder weerstand tegen parasieten, want daarbij spelen bloedcellen een rol. Maar dat is niet onderzocht.

Lieveheersbeestjes kunnen bestanddelen van de hemolymfe succesvol inzetten tegen alle typen vijanden – maar ze kunnen die dus niet allemaal tegelijk met volle kracht bestrijden. Als ze veelvuldig met hongerige belagers te maken hebben, moeten ze inleveren op hun weerstand tegen ziekteverwekkers en parasieten.

Willy van Strien

Foto: Veelkleurig Aziatisch lieveheersbeestje, Harmonia axyridis. Timku (via Flickr, Creative Commons CC BY-NC-SA 2.0)

Bron:
Knapp. M., M. Řeřicha & D. Židlická, 2020. Physiological costs of chemical defence: repeated reflex bleeding weakens the immune system and postpones reproduction in a ladybird beetle. Scientific Reports 10: 9266. Doi: 10.1038/s41598-020-66157-9

Meeroepen voor de veiligheid

Mannetje boomkikker Smilisca sila is liever geen voorganger

mannetjes Smilisca sila roepen bijna tegelijkertijd

Zo gauw één mannetje van de boomkikker Smilisca sila roept, vallen andere mannetjes in de buurt vrijwel gelijktijdig in. Na een korte periode van herrie is het daarna weer lange tijd stil. Henry Legett en collega’s vonden een verklaring voor dit patroon.

Mannetjes van de boomkikker Smilisca sila staan voor een lastig dilemma. De kikker leeft in Midden-Amerika. Om zich voort te kunnen planten, moeten mannetjes een vrouwtje lokken door te roepen en dat doen ze in de avond, vanaf een plekje langs of boven een beek of kreek. Maar daarmee verraden ze hun aanwezigheid niet alleen aan vrouwtjes, maar ook aan hun natuurlijke vijanden, de franjelipvleermuis (Trachops cirrhosus) en muggen. De vijanden gaan op het geluid af.
Volgens Henry Legett en collega’s beperken de kikkermannetjes het risico door een gehoorsillusie te creëren voor hun vijanden.

Die illusie ontstaat door de manier waarop dieren, inclusief wijzelf, geluid verwerken. Als er met een korte tussentijd (het gaat om milliseconden) twee of meer identieke geluiden gemaakt worden door geluidsbronnen die dicht bij elkaar staan, horen we dat als één geluid. En dat is afkomstig van de bron die het geluid als eerste uitte. Zo negeren we weerkaatsingen die ontstaan in een gemeubileerde kamer of een bos, en nemen we geluiden helder waar. De voorrang die het eerste geluid krijgt heet het precedence effect.

Navolgers

franjelipvleermuis is gevoelig voor gehoorsillusieDankzij dit effect kunnen Smilisca sila-mannetjes die vrijwel gelijktijdig meeroepen met een ander, zich verstoppen voor de oren van hun vijanden. En dat werkt aardig, blijkt uit playbackexperimenten van de onderzoekers. Daarbij gebruikten ze twee speakers die vrijwel gelijktijdig de roep van een mannetje lieten horen; afwisselend was de ene of de andere speaker leidend. Ze keken achtereenvolgens hoe vleermuizen, muggen en kikkervrouwtjes reageerden.

Een mannetje dat een ander meteen volgt in zijn roep, loopt een wat kleiner risico dat een vleermuis hem pakt en trekt minder muggen aan dan de voorganger, maakten ze uit de resultaten op.
Navolging loont dus. Althans: voor zover het gaat om veiligheid. Maar hoe zit het met de voortplanting? Als ook vrouwtjes de navolgers moeilijker vinden, schieten die weinig op met de auditieve verstoppartij.

Maar dat blijkt mee te vallen. Het precedence effect is sterk bij andere kikkersoorten, zoals de tungarakikker (Engystomops pustulosus); die leeft in hetzelfde gebied en mannetjes roepen ook ’s nachts, maar niet gelijktijdig. Vergeleken met tungarakikkervrouwtjes is het effect bij vrouwtjes Smilisca sila beperkt. Ze kiezen minder vaak voor navolgers dan voor voorgangers, maar het verschil is klein. Ook navolgers krijgen damesbezoek.

Stilte

Rest de vraag waarom een boomkikkermannetje als eerste begint met roepen. Als voorganger heeft hij immers weinig extra aantrekkingskracht op vrouwtjes, maar loopt hij wel een grotere kans om opgegeten te worden.
Anderzijds: iemand moet het doen. Als alle mannetjes zouden blijven zwijgen, gebeurt er niets. Maar de onwil van mannetjes om de eerste te zijn verklaart wel dat er lange periode van stilte zijn, slechts af en toe onderbroken door een korte uitbarsting van geroep.

Willy van Strien

Foto’s:
Groot: Boomkikker Smilisca sila, Brian Gratwicke (Wikimedia Commons, Creative Commons CC BY 2.0)
Klein: Franjelipvleermuis, Karin Schneeberger alias Felineora (Wikimedia Commons, Creative Commons CC BY 3.0)

Bronnen:
Legett, H.D., C.T. Hemingway & X.E. Bernal, 2020. Prey exploits the auditory illusions of eavesdropping predators. The American Naturalist 195: 927-933. Doi: 10.1086/707719
Tuttle, M.D. & M.J. Ryan, 1982. The role of synchronized calling, ambient light, and ambient noise, in anti-bat-predator behavior of a treefrog. Behavioral Ecology and Sociobiology 11: 125-131. Doi: 10.1007/BF00300101

Vereende krachten tegen broedparasiet

Mangrovezanger waarschuwt, epauletspreeuw valt aan

Epauletspreeuw luistert alarmroep van mangrovezanger af

De mangrovezanger laat een speciale roep horen als er een broedparasiet in de buurt is. De epauletspreeuw pikt het signaal op en valt aan, schrijven Shelby Lawson en collega’s. Zo beschermen de vogels samen hun nesten.

Epauletspreeuw wordt geparasiteerd door bruinkopkoevogel, een broedparasietEen vogelnest met eieren of jongen is kwetsbaar. Een van de gevaren is dat een vreemde vogel er een ei in legt en de ouders opscheept met een pleegjong, zoals de koekoek doet. Dat risico loopt de epauletspreeuw, die broedt in natte gebieden in Noord- en Midden-Amerika. Hier is de bruinkopkoevogel de ‘koekoek’, oftewel de broedparasiet.
Hoewel een jonge koevogel niet, zoals een koekoeksjong, zijn pleegbroertjes en -zusjes uit het nest gooit, zijn die toch slecht af. Het vreemde jong eist zoveel aandacht dat de rechtmatige jongen te kort komen en verhongeren of in een slechte conditie uitvliegen.
De epauletspreeuw moet de koevogel dus buiten zijn nest zien te houden. Daarbij profiteert hij van de waakzaamheid van de mangrovezanger, een andere zangvogel die de koevogel op bezoek kan krijgen, laten Shelby Lawson en collega’s zien. De mangrovezanger op zijn beurt profiteert van de agressie van de epauletspreeuw.

Verdediging

Mangrovezanger waarschuwt voor broedparasietAls mangrovezangers een bruinkopkoevogel ontdekken, laten ze een specifiek alarmsignaal horen, een ‘siet’-klank. Alle vrouwtjes die dat horen reageren adequaat: ze gaan onmiddellijk naar hun nest (als ze daar al niet waren), herhalen de ‘siet’ en drukken zich stevig op hun legsel. Zo heeft een koevogel geen toegang.
Mangrovezangers laten de ‘siet’-klank alleen horen als de broedparasiet in de buurt is en alleen in de broedperiode. Voor roofvijanden hebben ze een ander signaal, en als dat klinkt hippen vrouwtjes rond en zijn ze alert, maar gaan ze niet terug naar het nest. De combinatie van het speciale waarschuwingssignaal voor broedparasiet en de adequate reactie van vrouwtjes is uniek.

De onderzoekers vroegen zich af of epauletspreeuwen dat specifieke signaal afluisteren en er hun voordeel mee doen. Ze speelden verschillende opgenomen geluiden af bij nesten van epauletspreeuwen en keken hoe die daarop reageerden.
Zowel spreeuwen-mannetjes als -vrouwtjes werden agressief als ze de ‘siet’ van mangrovezangers hoorden en vielen de speaker aan. Ze reageerden even opgewonden als op het ‘gebabbel’ van bruinkopkoevogels. En ook de roep van een blauwe gaai, een roofvijand die nesten plundert, wekte die agressie op. De reactie op de ‘siet’-klank is blijkbaar een algemene verdedigingsactie tegen verschillende gevaren die een nest bedreigen. De zang van een onschuldige zangvogel negeerden ze.
Overigens lokte het gebabbel van andere epauletspreeuwen de verdedigingsreactie het allersterkst uit. De vogels beschouwen soortgenoten die hun territorium binnendringen kennelijk als het grootste gevaar.

Samen

Het waarschuwingssignaal van mangrovezangers voor broedparasieten wordt dus opgepikt door epauletspreeuwen, die op het gevaar af gaan. Daar profiteren mangrovezangers weer van. Uit eerder onderzoek was al gebleken dat hun nesten minder risico lopen op misbruik door een koevogel als ze in de buurt van epauletspreeuwen broeden. Epauletspreeuw en mangrovezanger nestelen vaak in elkaars nabijheid; samen kunnen ze zich tegen de broedparasiet weren.

Tot nu toe lijkt de epauletspreeuw de enige vogelsoort te zijn die de waarschuwing van mangrovezangers voor broedparasieten verstaat en erop reageert.

Willy van Strien

Foto’s:
Groot: Epauletspreeuw. Brian Gratwicke. (Wikimedia Commons, Creative Commons CC BY 2.0)
Klein boven: Bruinkopkoevogel vrouwtje. Ryan Hodnett (Wikimedia Commons, Creative Commons CC BY-SA 4.0)
Klein onder: Mangrovezanger mannetje. Mykola Swarnyk (Wikimedia Commons, Creative Commons CC BY-SA 3.0)

De onderzoekers lichten hun werk toe op YouTube

Bronnen:
Lawson, S.L., J.K. Enos, N.C. Mendes, S.A. Gill & M.E. Hauber, 2020. Heterospecific eavesdropping on an anti-parasitic referential alarm call. Communications Biology 3: 143 . Doi: 10.1038/s42003-020-0875-7
Gill, S.A. & S.G. Sealy, 2004. Functional reference in an alarm signal given during nest defence: seet calls of yellow warblers denote brood-parasitic brown-headed cowbirds. Behavioral Ecology and Sociobiology 5671-80. Doi: 10.1007/s00265-003-0736-7
Clark, K.L. & R.J Robertson, 1979. Spatial and temporal multi-species nesting aggregations in birds as anti-parasite and anti-predator defenses. Behavioral Ecology and Sociobiology 5: 359-371. Doi: 10.1007/BF00292524

Mangrovekwal steekt op afstand

Slijm zit stampvol bolletjes met netelcellen

Mangrovekwal stoot slijm uit met stekende celbolletjes

Het water rondom mangrovekwallen is gevaarlijk voor kleine beestjes en prikkelend voor snorkelaars. Beweeglijke celstructuren, afgescheiden door de kwallen, zijn daar verantwoordelijk voor, laten Cheryl Ames en collega’s zien.

De mangrovekwal Cassiopea xamachana zwemt niet rond, zoals kwallen normaal gesproken doen, maar strijkt ondersteboven neer op modderige bodems van mangrovebossen, zeegrasvelden of ondiepe baaien, zijn acht mondarmen met uitbundig vertakte flappen omhoog. De kwal komt voor in warme gedeelten van de westelijke Atlantische Oceaan, de Caribische Zee en de Golf van Mexico, vaak in grote groepen.
Het liggende bestaan is niet het enige ongewone van dit dier. Apart is ook dat in zijn geleiachtige lijf eencellige algachtige organismen leven, de zogenoemde zoöxanthellen. Net als planten maken die koolhydraten en zuurstof uit koolstofdioxide en water, met behulp van energie uit zonlicht. Een deel van de koolhydraten staan ze af aan de kwal, in ruil voor hun comfortabele en veilige onderkomen.

En dan is er nog een derde eigenaardigheid: water rondom een groep mangrovekwallen ‘steekt’, zoals snorkelaars weten. Cheryl Ames en collega’s ontdekten hoe de mangrovekwal dat voor elkaar krijgt.

Beweeglijke celbolletjes

De koolhydraten die de mangrovekwal aan zijn inwonende micro-organismen ontleent, zijn de belangrijkste bron van energie. Maar de kwal heeft ook eiwitten nodig. Daarom vult hij zijn dieet aan met dierlijk voedsel.
Om prooien te vangen hebben kwallen netelcellen. Deze cellen dragen netelblaasjes, een soort van harpoentjes, en zijn voorzien van een gifmengsel; de harpoentjes kunnen kleine beestjes verlammen of doden. De steken schrikken bovendien bedreigers af.
De mangrovekwal heeft netelcellen op zijn mondarmen. Het dier ligt te pulseren en veroorzaakt daarmee bewegingen in het water die prooidiertjes naar de armen drijft, waar ze gevangen worden. Maar hij steekt, in tegenstelling tot andere kwallen, ook op afstand. Hoe doet hij dat?

Als er prooidiertjes zijn of als de kwal verstoord wordt, zo blijkt uit het huidige onderzoek, stoot hij grote hoeveelheden slijm uit. Daarin zitten microscopisch kleine bolletjes met een bobbelig oppervlak. Ze hebben aan de buitenkant een laag cellen, namelijk netelcellen en opperhuidcellen met zweepharen. De inhoud is geleiachtig als de kwal zelf; vaak zitten er zoöxanthellen in.

Dodelijk

De celbolletjes, die de onderzoekers cassiosomen hebben genoemd, worden in grote hoeveelheden aangemaakt op de armen van de kwal. Bij verstoring begint hij ze na vijf minuten uit te stoten in een wolk slijm en gaat daar uren mee door. Dankzij de zweepharen zijn de bolletjes beweeglijk. Ze zwemmen een kwartier lang rond in het slijm en zakken dan naar beneden; daar blijven ze nog dagenlang kruipen en draaien. Ze worden geleidelijk gladder en kleiner en vallen uiteindelijk uit elkaar.

De cassiosomen zijn in staat prooidiertjes te doden, blijkt uit proeven in het lab. Een pekelkreeftje bijvoorbeeld is vaak op slag dood als hij met zo’n bolletje in aanraking komt.

Terwijl ze met hun werk bezig waren, ondervonden de onderzoekers zelf dat het water in de proefbakken stak.

Van alle eigenaardigheden die de mangrovekwal heeft, is dit misschien wel de vreemdste: stukjes kwal die los van het eigenlijke lichaam dagenlang in leven blijven en de kwal helpen prooien te vangen en vijanden af te schrikken. De onderzoekers weten inmiddels dat een handvol nauw verwante soorten kwallen vergelijkbare kleine ‘granaten’ afscheidt.
De celbolletjes in het slijm van de mangrovekwal waren al eerder gezien, aan het begin van de twintigste eeuw, maar men dacht dat het parasieten waren. Dat het kwalweefsel was had toen niemand kunnen denken.

Willy van Strien

Foto: Bjoertvedt (Wikimedia Commons, Creative Commons CC BY-SA 4.0)

Bron:
Ames, C.L., A.M.L. Klompen, K. Badhiwala, K. Muffett, A.J. Reft, M. Kumar, J.D. Janssen, J.N. Schultzhaus, L.D. Field, M.E. Muroski, N. Bezio, J.T. Robinson, D.H. Leary, P. Cartwright, A.G. Collins & G.J. Vora, 2020. Cassiosomes are stinging-cell structures in the mucus of the upside-down jellyfish Cassiopea xamachana. Communications Biology 3: 67. Doi: 10.1038/s42003-020-0777-8

Uit betrouwbare bron?

Boomklever geeft afgeluisterde informatie onvolledig door

Canadese boomklever luistert Amerikaanse matkop af

De Canadese boomklever verstaat de alarmroep van Amerikaanse matkoppen uitstekend. Maar hij geeft niet alle informatie die daarin besloten is door in zijn eigen roep, laten Nora Carlson en collega’s zien.

Een uil die overdag rustig op een boomtak zit vormt geen acuut gevaar voor zangvogels. Toch hebben die hem liever niet in hun buurt. Door met een groep een boel drukte te maken, proberen ze de vijand te verjagen.
Zo ook de Canadese boomklever uit Noord-Amerika. Als deze vogel weet dat er een uil zit, ronselt hij soortgenoten om mee te doen met jennen. In zijn oproep geeft hij daarbij aan hoe gevaarlijk de uil is die hij weg wil pesten, schrijven Nora Carslon en collega’s. Althans: als de boomklever die vijand zelf heeft waargenomen.

Op hoge toon

Niet alle uilen zijn namelijk even gevaarlijk. De Amerikaanse oehoe, een knoeperd van ongeveer een halve meter lengte, is niet wendbaar genoeg om een zangvogeltje makkelijk te kunnen pakken; hij is dan ook niet erg bedreigend. Voor de kleine, behendige Noordamerikaanse dwerguil is het veel meer oppassen geblazen.
Boomklevers reageren dan ook verschillend als ze oehoe of dwerguil horen, zo bleek In playbackexperimenten waarin de onderzoekers deze zangvogels blootstelden aan de roep van beide vijanden. Horen boomklevers een dwerguil, dan bestaat hun pestoproep uit kortere roepjes op hogere toon die sneller na elkaar komen dan wanneer ze een oehoe horen. De opgetrommelde soortgenoten zijn dan meer opgewonden en gaan langduriger en feller tekeer – in dit geval tegen de speakers die de onderzoekers gebruikten.
Zo stoppen de zangvogels hun tijd en energie vooral in het verjagen van de meest gevaarlijke vijanden.

Luistervink

Amerikaanse zwartkop laat horen hoe gevaarlijk een vijand isBoomklevers hoeven niet alleen op hun eigen oren te vertrouwen; ze maken ook gebruik van de waakzaamheid van andere zangvogels en luisteren hun alarmroep af.
De onderzoekers hadden eerder al laten zien hoe boomklevers gepast reageren op pestoproepen van Amerikaanse matkoppen. Ook deze vogeltjes laten in hun alarmroep horen of ze een minder gevaarlijke oehoe of een gevreesde dwerguil in het vizier hebben. Als boomklevers matkoppen horen roepen vanwege een dwerguil, maken ze meer drukte en laten ze zelf meer oproepen horen dan wanneer ze matkoppen alarm horen slaan om een oehoe. Ze begrijpen de boodschap van de matkoppen dus uitstekend.

Maar ondanks dat begrip geven boomklevers in hun eigen pestoproep niet door of er volgens matkoppen een meer of minder gevaarlijke uil verjaagd moet worden, zoals ze wel doen wanneer ze die vijand zelf hebben waargenomen. Komt de informatie van matkoppen, dan laten ze in het midden hoe gevaarlijk de vijand is. Letterlijk: hun pestoproep zit dan qua lengte van roepjes, toonhoogte en tempo tussen oproepen bij hoog en laag risico in.

En dat is misschien niet eens zo gek. Hoewel boomklevers en matkoppen dezelfde vijanden hebben, zijn ze door hun verschillende levenswijze niet even kwetsbaar voor die vijanden. Hoe matkoppen de bedreiging die van verschillende vijanden uitgaat ervaren en communiceren kan dus verschillen van hoe boomklevers het gevaar zouden inschatten. Dat maakt de informatie die ze van matkoppen krijgen wat minder betrouwbaar.

Willy van Strien

Foto’s
Groot: Canadese boomklever. Cephas (Wikimedia Commons, Creative Commons CC BY-SA 3.0)
Klein: Amerikaanse matkop. Shanthanu Bhardwaj (Wikimedia Commons, Creative Commons CC BY-SA 2.0)

Bronnen:
Carlson, N.V., E. Greene & C.N. Templeton, 2020. Nuthatches vary their alarm calls based upon the source of the eavesdropped signals. Nature Communications 11: 526. Doi: 10.1038/s41467-020-14414-w
Templeton, C.N. & E. Greene, 2007. Nuthatches eavesdrop on variations in heterospecific chickadee mobbing alarm calls. PNAS 104: 5479-5482. Doi: 10.1073_pnas.0605183104
Templeton, C.N., E. Greene & K. Davis, 2005. Allometry of alarm calls: black-capped chickadees encode information about predator size. Science 308: 1934-1937. Doi: 10.1126/science.1108841

« Oudere berichten Nieuwere berichten »

© 2025 Het was zo eenvoudig begonnen

Thema gemaakt door Anders NorenBoven ↑