Evolutie en Biodiversiteit

Categorie: verdediging (Pagina 4 van 7)

Camouflagepak

Overdekt met sponzen valt een krab niet zo op

De krab Camposcia retusa versiert zich uitbundig

De krab Camposcia retusa versiert zijn poten en pantser uitbundig met stukken spons. Hij doet dat waarschijnlijk om roofvijanden te misleiden, schrijven Rohan Brooker en collega’s. Hij versiert zich namelijk het meest als hij geen plekken heeft om zich te verschuilen.

Uitgedost met veel vastgehechte stukjes spons, aangevuld met wat algen en dood organisch materiaal, scharrelt de krab Camposcia retusa rond: een komisch gezicht. De krab leeft op tropische koraalriffen in de Indische Oceaan en het westelijk deel van de Stille Oceaan. Wat brengt dit beestje, met een schild van maximaal drie centimeter breed, ertoe om al dat spul met zich mee te zeulen?
Volgens Rohan Brooker en collega’s doet hij het om zich onzichtbaar te maken voor zijn roofvijanden. Bovendien zijn veel sponzen giftig, dus de krab maakt zich ook nog eens onaantrekkelijk voor vijanden die hem ondanks de camouflage toch in de smiezen hebben.

De onderzoekers wilden weten hoe de krabben zich precies versieren. Ze bekeken een aantal krabben die ze hadden gevangen en in een aquarium boden ze krabben rode polyester pompoms van verschillende formaten aan om te zien wat ze daarmee zouden doen.

Klittenband

Ze constateerden dat de dieren vooral hun pantser en de achterste twee pootparen bedekken (ze hebben vier paar poten). In het experiment plaatsten ze de grootste en zwaarste pompoms alleen op de achterste poten, die het stevigst zijn. De scharen – waarmee ze eten en communiceren – en het eerste pootpaar hielden ze nagenoeg vrij.
De delen die uitbundig versierd worden zijn daartoe uitgerust met speciale haren die lijken op de haakjes van de harde helft van klittenband. Daar hechten stukjes spons en ander materiaal makkelijk op vast.

Verdediging

In een nieuw experiment kregen de krabben in hun bak al dan geen schuilplaats in de vorm van een gebogen stuk pvc-buis. De krabben die zich niet konden verstoppen versierden zich uitvoeriger dan de krabben die wel een schuilplaats hadden. Vandaar de conclusie dat de versiering dient als verdediging tegen roofvijanden. Omdat de dieren allerlei materiaal van de zeebodem gebruiken, zullen ze minder in het oog springen. En omdat ze een voorkeur voor sponzen hebben, zal de versiering een afschrikwekkend effect hebben.
Het zou mooi zijn als de onderzoekers nu nog kunnen laten zien dat roofvijanden krabben in camouflagepak inderdaad minder makkelijk vinden, of dat de sponzen hen afschrikken.

Er zijn meer dieren die op de versiertoer gaan, vooral dieren die in het water leven. Camposcia retusa is een prachtig voorbeeld.

Willy van Strien

Foto: Patrick Randall (via Flickr, Creative Commons CC BY-NC-SA 2.0)

Drie voorbeelden van versierde krabben op YouTube: 1, 2, 3

Bron:
Brooker, R.M., E.C. Muñoz Ruiz, T.L. Sih & D.L. Dixson, 2017. Shelter availability mediates decorating in the majoid crab, Camposcia retusa. Behavioral Ecology, 17 oktober online. Doi: 10.1093/beheco/arx119

Steenkleurig blad

Camouflage beschermt bergplant tegen vraat

Helmbloem Corydalis hemidicentra heeft de kleur van de stenige ondergrond

Het is geen toeval dat hoog in de bergen van China helmbloemen groeien met bladeren in de kleur van steen. Planten zonder steenkleur worden door vlinders gevonden en door rupsen weggevreten, laten Yang Niu en collega’s zien.

Apollovlinder legt eitjes bij Corydalis-plantDe bladeren van de helmbloemsoort Corydalis hemidicentra zijn niet lekker fris groen, maar hebben de kleur van stenen: donkergrijs, roodbruin of grijsgroen.
Dat is ongewoon, maar het is niet voor niets. De plant groeit op kale, stenige ondergrond in de zeer hoge bergen in Zuidwest-China. Een normale groene bladkleur zou daar erg opvallen en plantenetende insecten aantrekken; een schutkleur beschermt de planten daartegen.

Vlinderogen

De voornaamste vijanden van de bergplanten zijn apollo-vlinders, zoals Parnassius cephalus. De vlindervrouwtjes zoeken helmbloemplanten op en leggen hun eitjes op de rotsen naast zo’n plant. Als de rupsen uitkomen, staat hun maaltje klaar. Ze vreten de plant vrijwel helemaal op.

Corydalis hemidicentra: drie kleuren steen, drie bladkleurenDe bladeren van Corydalis hemidicentra passen qua kleur vrijwel altijd goed bij de achtergrond. Waar het gesteente grijs is, zijn de bladeren grijs, tussen roodbruine stenen groeien roodbruine planten en op een grijsgroene ondergrond staan grijsgroene planten. Yang Niu en collega’s laten zien dat de bladkleur niet alleen voor ons, maar ook voor vlinderogen gelijk is aan de achtergrondkleur. De steenkleuren ontstaan doordat de bladeren niet alleen groen pigment (chlorofyl) bevatten, zoals normaal, maar ook rood pigment (anthocyaan) en met lucht gevulde ruimtes die wit kleuren. De bladkleur is erfelijk bepaald.

Bestuivers

Niu had eerder onderzoek gedaan aan een andere helmbloemsoort uit de bergen, Corydalis benecincta, waarvan een vorm met groen en een vorm met grijs blad bestaat. Hij had gevonden dat apollo-vlinders de groene planten inderdaad veel makkelijker vinden, met als gevolg dat veel groene planten door vraat verloren gaan, terwijl grijze planten vaak ontkomen. Voor planten die aan de vlinders ontsnappen maakt het niet uit of ze grijsgroen zijn of groen: beide vormen doen het even goed. Ook voor Corydalis hemidicentra zal gelden dat niet-gecamoufleerde planten opgegeten worden, terwijl planten met schutkleuren blijven staan. Dat verklaart dat de bladkleur van de planten altijd goed past bij de achtergrond.

Terwijl de planten zich door camouflage verborgen houden voor vlinders, moeten ze voor bestuivers juist wel goed te vinden zijn. Dankzij de opvallend gekleurde bloemen – blauw bij Corydalis hemidicentra, lichtpaars bij Corydalis benecincta – zijn ze dat ook. Maar die bloemen verschijnen pas als de planten niet meer in gevaar zijn, dat wil zeggen als de periode waarin vlinders hun eitjes leggen voorbij is.

Er zijn veel dieren een schutkleur hebben om niet op te vallen, maar er zijn dus ook planten met bladeren in de achtergrondkleur, vooral in kale berggebieden. In een begroeid gebied kan een voor planteneters aantrekkelijke plant juist beter groen zijn; hij valt dan niet op tussen de andere planten.

Willy van Strien

Foto’s: ©Yang Niu

Bronnen:
Niu, Y., Z. Chen, M. Stevens & H. Sun, 2017. Divergence in cryptic leaf colour provides local camouflage in an alpine plant. Proceedings of the Royal Society B 284: 20171654. Doi: 10.1098/rspb.2017.1654
Niu, Y., G. Chen, D-L. Peng, B. Song, Y. Yang, Z-M. Li & H. Sun, 2014. Grey leaves in an alpine plant: a cryptic colouration to avoid attack? New Phytologist 203: 953-963. Doi: 10.1111/nph.12834

Behoefte aan peuken

Mexicaanse huismus neemt bijwerkingen op de koop toe

Mexicaanse huismus gebruikt peuken om parasieten te bestrijden

Doorrookte sigarettenfilters zijn vies. Toch leggen sommige vogels dit spul in hun nest, want de nicotine houdt bloedzuigende parasieten weg. Ze doen het alleen als het nodig is, laten Monserrat Suárez-Rodríguez en Constantino Macías Garcia zien.

Filters van sigarettenpeuken zijn in trek bij een aantal vogels, waaronder de Mexicaanse roodmus. Vogels verwerken cellulosevezels uit de peuken in de bekleding van hun nest, die verder bestaat uit gebruikelijker zacht materiaal zoals veren, haren en draadjes. Monserrat Suárez-Rodríguez en Constantino Macías Garcia vroegen zich af of de vogels er zomaar peuken bij stoppen, of dat het is om hun jongen te beschermen tegen bloedzuigende parasieten: luizen en mijten.
Uit eerder onderzoek wisten ze namelijk dat die parasieten wegblijven van nicotine, en hoe meer van nicotine doordrenkt materiaal uit sigarettenpeuken ze in een nest hadden aangetroffen, hoe minder parasieten er waren. De jonge vogels varen daar wel bij: ze groeien beter en meer jongen vliegen uit naarmate de bekleding van het nest meer peukmateriaal bevat, en het nest dus minder parasieten telt.

Daar staat tegenover dat het peukmateriaal ook schadelijk is voor zowel de volwassen vogels als de jongen. Er zitten meer dan vierhonderd stoffen in waarvan er veel giftig zijn. Naast nicotine zijn dat onder meer zware metalen en bestrijdingsmiddelen; via huidcontact en ingeademde lucht krijgen de vogels ze binnen.

Schade

De onderzoekers analyseerden bloedmonsters van zowel broedende oudervogels als hun jongen die aan peuken waren blootgesteld, en zagen afwijkingen aan het erfelijk materiaal in veel rode bloedcellen (rode bloedcellen van vogels hebben een celkern met erfelijk materiaal, in tegenstelling tot menselijke rode bloedcellen, die kernloos zijn). Hoe meer peukmateriaal in een nest, hoe meer afwijkingen. Rode bloedcellen gaan slechts twee tot vier weken mee en worden dan vervangen, dus die schade is misschien niet zo erg. Maar waarschijnlijk raken ook celtypen die langer meegaan beschadigd. De vraag is of het voordeel van peukmateriaal in het nest – minder parasieten en daardoor betere groei – daartegen opweegt.

Het antwoord zal ervan afhangen of de peuken hard nodig zijn om parasieten te bestrijden.

Mijten

Nu blijkt uit experimenten dat Mexicaanse roodmussen daar naar handelen: ze stoppen meer doorrookte cellulosevezels in de nestbekleding als ze werkelijk met parasieten te maken hebben.
De onderzoekers haalden de bekleding weg uit nesten wanneer de jongen net uit het ei gekomen waren en vervingen die door een laag vilt; daarmee hadden ze tegelijkertijd ook de meeste parasieten verwijderd. De oude bekleding onderzochten ze op cellulosevezels. In een deel van de viltnestjes brachten ze levende mijten aan, in een ander deel dode mijten en in de overige niets. Nadat de jongen waren uitgevlogen haalden ze de viltnestjes op en keken hoeveel peukmateriaal de ouders erin gestopt hadden.
Ze constateerden dat de vogels meer peuken hadden verzameld als er levende mijten waren toegevoegd, dus als het zinvol was. Ook vogels die in de oorspronkelijke nestbekleding veel peukmateriaal hadden gestopt, haalden nu meer peuken binnen; zij hadden kennelijk tijdens de periode van broeden met parasieten te maken gehad.

De vogels verzamelen peuken niet zomaar als willekeurig bouwmateriaal, is de conclusie; het is een reactie op de aanwezigheid van parasieten, een vorm van zelfmedicatie.

Willy van Strien

Foto: Mexicaanse roodmus, mannetje voedt jong. Susan Rachlin (Wikimedia Commons, Creative Commons CC BY 2.0)

Zie ook: Verfrissende peuk

Bronnen:
Suárez-Rodríguez, M. & C. Macías Garcia, 2017. An experimental demonstration that house finches add cigarette butts in response to ectoparasites. Journal of Avian Biology, 1 september online. Doi: 10.1111/jav.01324
Suárez-Rodríguez, M., R.D. Montero-Montoya & C. Macías Garcia, 2017. Anthropogenic nest materials may increase breeding costs for urban birds. Frontiers in Ecology and Evolution 5: 4. Doi: 10.3389/fevo.2017.00004
Suárez-Rodríguez, M. & C. Macías Garcia, 2014. There is no such a thing as a free cigarette; lining nests with discarded butts brings short-term benefits, but causes toxic damage. Journal of Evolutionary Biology 27: 2719–2726. Doi: 10.1111/jeb.12531

Achter het behang geplakt

Slakkenhuis als wapen tegen parasitaire wormpjes

huisje van gewone tuinslak kapselt parasitaire wormpjes in

Parasitaire wormpjes die een slakkenhuisje inkruipen worden soms door de cellen van de binnenbekleding van dat huisje gevangen, ingekapseld en tegen de wand gezet, laat Robbie Rae zien.

Dankzij het huisje kan een huisjesslak tegen een stootje. Het huisje beschermt hem tegen beschadiging, roofvijanden, hitte en kou, droogte en regen. Maar er is meer, ontdekte Robbie Rae. Slakken gebruiken hun huisje ook om parasitaire rondwormpjes (nematoden) uit te schakelen. Deze parasieten vallen de slakken al lastig sinds die op aarde verschenen, zo’n 400 miljoen jaar geleden. Dat slakken iets hebben ontwikkeld om zich tegen hen te verweren is dus logisch, maar tot nu was geen verdedigingsmethode bekend.

Binnenbekleding

Rae stelde in het lab een aantal gewone tuinslakken (Cepaea nemoralis) gedurende een aantal weken bloot aan rondwormpjes van de soort Phasmarhabditis hermaphrodita. Dit in de bodem levende diertje van nog geen 2 millimeter lang kan veel soorten slakken infecteren en uiteindelijk doden, maar er zijn ook slakken waarop het geen vat heeft, waaronder de gewone tuinslak; zij zijn tegen hem bestand. Rae volgde de confrontatie tussen tuinslak en wormen om erachter te komen hoe de slak de parasieten uitschakelt.

rondwormpjes aan het slakkenhuis geplakt Daarbij blijkt de binnenbekleding van het huisje cruciaal te zijn. Cellen die deel uitmaken van die bekleding hechten zich aan een naar binnen gekropen wormpje, vermenigvuldigen zich en verspreiden zich over het beestje totdat het helemaal bedekt is. Het wormpje wordt met de cellaag verankerd aan de binnenkant van het huisje en gaat dood. Tuinslakken kapselen op deze manier niet alleen dit dodelijke wormpje in, maar ze gebruiken de afweerreactie ook tegen minder schadelijke rondwormpjes, bleek uit proeven.

Voorgoed vast

En buiten gebeurt dat volop. Rae verzamelde gewone en witgerande tuinslakken (Cepaea hortenis) in het veld en zag dat veel slakken verschillende soorten wormpjes ‘achter het behang geplakt’ hebben, tot soms wel 100 exemplaren per huisje.  Ook de segrijnslak (Cornu aspersum) – net als de tuinslakken een huisjesslak die in Nederland voorkomt – maakt binnengedrongen wormpjes op deze manier onschadelijk.
Tenslotte bekeek hij een groot aantal huisjesslakken uit museumcollecties en constateerde dat heel veel soorten slakken parasieten kunnen inkapselen. Gevangen wormpjes blijven voorgoed aan de wand vastgehecht; ze zijn zelfs terug te vinden in slakken die al een paar honderd jaar dood zijn. Omdat dit verdedigingsmechanisme wijd verspreid is binnen de grote en oude groep van de landslakken, moet het al zo’n 100 miljoen jaar oud zijn. Zelfs enkele naaktslakken schakelen parasitaire rondwormen op deze manier uit. Ze hebben in de loop van de evolutie hun huisje verloren, maar bij veel soorten is er een restant van over, en daarmee kunnen ze wormpjes vangen en inkapselen.

Een soort huisjesslak die zich niet tegen het rondwormpje Phasmarhabditis hermaphrodita kan verdedigen is de bolle duinslak (Cernuella virgata). Kennelijk weet het wormpje zijn afweerreactie te blokkeren. Ook veel naaktslakken zijn niet tegen de parasiet opgewassen, en het wormpje is dan ook op de markt als biologisch bestrijdingsmiddel tegen plantenetende naaktslakken.

Willy van Strien

Foto’s:
Groot: gewone tuinslak, Cepaea nemoralis. Kristian Peters (Wikimedia Commons, Creative Commons CC BY-SA 3.0)
Klein: wormpjes tegen de wand van een slakkenhuis geplakt. © Robbie Rae

Bron:
Rae, R., 2017. The gastropod shell has been co-opted to kill parasitic nematodes. Scientific Reports 7: 4745. Doi: 10.1038/s41598-017-04695-5

Het venijn in de kop

Vis met giftige hoektanden heeft veel navolgers

Sabeltandslijmvis Petroscirtes breviceps bootst een giftige soort na

Meiacanthus-soorten zijn als enige vissen bewapend met giftige tanden. Roofvissen laten deze venijnige vissen met rust, en een aantal andere vissen bootst het uiterlijk en gedrag van Meiacanthus na om vijanden op een afstand te houden. Een groot onderzoeksteam ontrafelde de evolutie van de giftige vissen.

Een roofvis die in een Meiacanthus-vis een makkelijk hapje denkt te zien, komt bedrogen uit. Het beestje laat zich niet zomaar opeten. Hij zet een paar scherpe tanden in zijn belager die gif injecteren. Die raakt van slag en laat zijn slachtoffer ontsnappen. En hij zal deze vis voortaan niet meer aanraken.
Meiacanthus-vissen zijn de enige vissen met giftanden. Ze behoren tot de groep van de sabeltandslijmvissen (Nemophini) die allemaal een paar grote, holle hoektanden in de onderkaak hebben. Nicholas Casewell laat, samen met een grote groep andere onderzoekers, zien dat de gemeenschappelijke voorouder van de sabeltandslijmvissen die grote hoektanden al had. Maar alleen bij de soorten van het geslacht Meiacanthus hebben ze zich ontwikkeld tot giftanden. Deze soorten hebben gifklieren aan de basis van de vergrote hoektanden en groeven in de tanden waarlangs het gif stroomt als ze het in een vijand inspuiten.

Het gif lijkt geen pijn te veroorzaken, schrijven de onderzoekers, maar het laat de bloeddruk van de roofvijand kelderen. Die wordt daardoor slap, raakt gedesoriënteerd en laat zijn prooi ongedeerd ontsnappen. De bloeddrukverlaging is kennelijk zo’n vervelende ervaring dat hij niet nog eens probeert een Meiacanthus te pakken. De onderzoekers troffen drie verbindingen in het gif aan die nooit eerder bij vissen waren gevonden.

Angst

Sommige niet-giftige sabeltandslijmvissen, maar ook sommige vissen van andere groepen, zien er hetzelfde uit als Meiacanthus-soorten en gedragen zich hetzelfde. Zo profiteren ze mee van de angst die roofvissen hebben voor Meiacanthus. Hoewel ze zelf geen verdediging tegen roofvissen hebben, zijn ze door deze na-aperij toch beschermd tegen aanvallen.

Wat doen niet-giftige sabeltandslijmvissen met hun vervaarlijke hoektanden? Voedsel pakken, waarschijnlijk. Dat geldt in elk geval voor alle Plagiotremus-soorten, die stukjes huid, schubben, slijm en vin van grotere vissen afbijten. Als ze op Meiacanthus-soorten lijken, doen hun slachtoffers niet gauw iets terug.

Plagiotremus rhinorhynchos heeft overigens nog een ander trucje. Hij kan ook het uiterlijk nabootsen van de gewone poetslipvis (Labroides dimidiatus) die grotere vissen van hun parasieten afhelpt: een ander voorbeeld van mimicry. Poetsvissen worden door roofvissen met rust gelaten omdat ze van nut zijn, en Plagiotremus rhinorhynchos buit dat handig uit. Veel vissen zijn meesters in vermommen en houden zo hun roofvijanden op de een of andere manier voor de gek.

Willy van Strien

Foto:
Petroscirtes breviceps, niet giftig, maar wel in het bezit van grote hoektanden in de onderkaak. ©Alex Ribeiro
CT-scan van de giftige soort Meiacanthus grammistes. ©Anthony Romilio (University of Queensland, Australië)

Zie ook: veilig dankzij vermomming

Bron:
Casewell, N.R., J.C. Visser, K. Baumann, J. Dobson, H. Han, S. Kuruppu, M. Morgan, A. Romilio, V. Weisbecker, S.A. Ali, J. Debono, I. Koludarov, I.Que, G.C. Bird, G.M. Cooke, A. Nouwens, W.C. Hodgson, S.C. Wagstaff, K.L. Cheney, I. Vetter, L. van der Weerd, M.K. Richardson & B.G. Fry, 2017. The evolution of fangs, venom,and mimicry systems in blenny fishes. Current Biology, 30 maart online. Doi: 10.1016/j.cub.2017.02.067

Microleger

Wolk zelfstandig opererende tangetjes beschermt zee-egel

Tripneustes gratilla laat een wolk gemene tangetjes los

Wanneer een hongerige vis in de buurt komt, laat de zee-egel Tripneustes gratilla een wolk van bijtende, giftige tangetjes los. Daar heeft zo’n vis niet van terug. Hannah Sheppard-Brennand en collega’s beschreven deze bijzondere verdediging.

Aan zee-egels en zeesterren vallen vooral de flinke stekels op, maar daartussen zitten ook nog een heleboel kleine ‘tangetjes’ op een beweeglijke steel, de pedicellariae. Die kunnen verschillende taken uitvoeren: ze vangen voedsel, verwijderen vuil – en ze plagen roofvijanden. Want al zien zee-egels en zeesterren er met al hun stekels niet uit als een aantrekkelijke prooi, toch zijn er dieren, onder meer vissen, die azen op hun uitstulpbare voetjes en ander zacht weefsel.

Bijtertjes

Sommige zee-egels hebben speciale tangetjes om met zulke vijanden af te rekenen, tangetjes die zijn uitgerust met tanden en een zakje gif. Wie wel eens op zo’n zee-egel trapte heeft zeker kennisgemaakt met deze gemene en pijnlijke dingetjes.

Een zee-egelsoort, Tripneustes gratilla, wacht niet af tot hij aangevreten wordt, maar laat zijn giftige bijtertjes al eerder in actie komen, laten Hannah Sheppard-Brennand en collega’s zien. Wordt deze zee-egel lastiggevallen, dan laat hij een wolk van tangetjes los in het water. De afgestoten tangetjes opereren daar zelfstandig. Ze kunnen zich voortbewegen en voelen, en ze zullen zich vastbijten in een vermeende vijand en hun gif inspuiten.

Rechtsomkeert

Vissen houden er niet van om op zo’n zwerm te stuiten, blijkt uit proeven in het lab, en zullen rechtsomkeert maken nog voordat ze een hapje van de zee-egel genomen hebben. Beschermd door zijn bijzondere verdedigingsleger kan Tripneustes gratilla niet alleen ’s nachts, maar ook overdag veilig grazen van algen en zeegras, als andere zee-egels zich maar liever verscholen houden.

Willy van Strien

Foto: Tripneustes gratilla met een wolk van tangetjes. © Hannah Sheppard Brennand

Bron:
Sheppard-Brennand, H., A.G.B. Poore & S.A. Dworjanyn, 2017. A waterborne pursuit-deterrent signal deployed by a sea urchin. The American Naturalist 189, online March 27. Doi: 10.1086/691437

Kleine vogelverschrikker

Epauletspreeuw deinst terug voor fluitende rups

epauletspreeuw is bang voor fluitende rups

Het is bijna potsierlijk als de kleine rups van het motje Amorpha juglandis plotseling een hoge pieptoon uitstoot. Het jaagt vogels zoveel angst aan dat ze de rups met rust laten, zagen Amanda Dookie en collega’s. Waarom zijn vogels eigenlijk bang voor dit fluitende beestje?

rups van Amorpha juglandis kan fluitenNormaal gesproken zijn vogels niet bang voor een rups. Maar van rupsen van het motje Amorpha juglandis (een soort pijlstaart) kunnen ze behoorlijk schrikken, schrijven Amanda Dookie en collega’s. Dat zijn dan ook bijzondere beestjes: ze gaan gillen als ze worden aangeraakt.
Veronica Bura heeft een paar jaar geleden uitgezocht hoe de rupsen hun hoge pieptoon maken. Ze hebben een stelsel van luchtbuizen met aan weerskanten een rij openingen naar buiten; hierdoor halen ze adem. Om geluid te maken trekt een rups de voorkant van zijn lijf samen, houdt alle openingen dicht behalve het laatste paar en perst daar met kracht lucht uit. En dan ontstaat een fluittoon. Het laatste paar luchtgaten is groter dan de andere, waarschijnlijk speciaal om te kunnen fluiten.
Vaak slaan de rupsen ook met de kop om zich te verdedigen. Dookie wilde weten of de fluittoon op zich voldoende is om vogels angst aan te jagen, en hoe erg ze ervan schrikken.

Schrikken

Ze onderzocht het door vogels te confronteren met het afgespeelde geluid van een rups dat vooraf opgenomen was. Proefdieren waren mannelijke epauletspreeuwen, die net als de mot in Noord Amerika leven. De vogels werden elk in een eigen kooi gehuisvest en kregen vier dagen lang dagelijks meelwormen aangeboden op een schoteltje. Daarna begonnen de proeven. Naast het schoteltje meelwormen waren een bewegingssensor en een luidspreker bevestigd en zo gauw een vogel het schoteltje aanraakte, werd het geluid van een fluitende rups afgespeeld.
Dat miste zijn uitwerking niet: alle vogels schrokken. De meeste vlogen op, sprongen achteruit of klapten met hun vleugels. Na een tijdje probeerden ze opnieuw een meelworm te pakken en kregen ze weer het gefluit te horen. Ze wenden er een beetje aan en reageerden steeds minder heftig. Maar als ze na twee dagen rust opnieuw met het geluid geconfronteerd werden, schrokken ze weer net zo erg als de eerste keer.

Onraad

Weten de rupsen aan hongerige vogels te ontkomen met hun gefluit? Waarschijnlijk wel. Buiten scharrelen de vogels overal rond. Als een fluitende rups ze angst aanjaagt, laten ze die rups waarschijnlijk met rust en gaan ze verderop voedsel zoeken.

Wat vind een vogel nu eigenlijk zo eng aan een fluitende rups?
Zo’n beestje is niet gevaarlijk of giftig, voor zover bekend. Maar de korte, hoge pieptoon die hij uitstoot is voor de vogels verbonden aan onraad, denken de onderzoekers. Hij lijkt namelijk op de alarmroep die veel vogels laten horen als er gevaar dreigt, en een schrikreactie daarop zit bij vogels ingebakken. Waarschijnlijk maakt de rups gebruik van die schrikreactie.

Willy van Strien

Foto’s:
Groot: epauletspreeuw Agelaius phoeniceus. Janet Beasly (Wikimedia Commons, Creative Commons CC BY-SA 2.0)
Klein: rups van Amorpha juglandis. © Jayne Yack

Bronnen:
Dookie, A.L., C.A. Young, G. Lamothe, L.A. Schoenle & J.E. Yack, 2017. Why do caterpillars whistle at birds? Insect defence sounds startle avian predators. Behavioural Processes, 138: 58-66. Doi: 10.1016/j.beproc.2017.02.002
Bura, V.L., V.G. Rohwer, P.R. Martin & J.E. Yack, 2011. Whistling in caterpillars (Amorpha juglandis, Bombycoidea): sound-producing mechanism and function. The Journal of Experimental Biology 214: 30-37. Doi:10.1242/jeb.046805

Reddingsbrigade

Bultruggen schieten te hulp als orka’s aanvallen

Bultrug met vervaarlijke borstvinnen helpt anderen

Met hun vervaarlijke uiterlijk zijn bultruggen de enige dieren die orka’s kunnen verjagen. Natuurlijk beschermen ze hun eigen jongen, maar ze nemen het ook op voor andere dieren, schrijven Robert Pitman en collega’s.

Bultruggen, grote baleinwalvissen, moeten niets van orka’s hebben. Althans niet van het orka-type dat zeezoogdieren eet. Volwassen bultruggen hebben zelf niets van de roofdieren te vrezen, want ze zijn twee keer zo groot en ze zijn stevig. Maar hun jongen staan wel op het menu van de ‘killer whales’. Veel jonge bultruggen hebben tandafdrukken van orka’s op hun staart. Zij hebben de confrontatie overleefd, maar ongetwijfeld zijn andere jongen ten prooi gevallen. Vandaar de afkeer.

Grote afstand

Verrassend is hoe ver die afkeer gaat. Robert Pitman en collega’s schrijven dat bultruggen niet alleen orka’s verjagen als die het op een jong van hen hebben voorzien, maar dat ze ook in actie komen als ze andere walvissen en zeeroofdieren (robben, walrussen, zeehonden) belagen. Ze maken dat op uit een groot aantal ooggetuigenverslagen. Waarom treden de bultruggen op als reddingsbrigade?

orka's druipen af als bultruggen agressief wordenHet is vanzelfsprekend dat een bultrug-moeder haar jong tegen orka’s beschermt. Het is ook begrijpelijk dat ze daarbij vaak hulp krijgt van een groepje soortgenoten. Dat zullen vaak familieleden zijn of bekenden die kunnen verwachten dat zij op hun beurt ook hulp krijgen als dat nodig is. Pitman en collega’s denken dat de bultruggen afkomen op het geluid dat orka’s maken als ze een slachtoffer in het vizier hebben. De helpende bultruggen komen soms van grote afstand, een paar kilometer, aanzetten.

Profiteren

Eenmaal ter plekke blijkt het dier dat wordt aangevallen vaak geen bultrug te zijn, maar een zeehond, zeeleeuw, dwergvinvis of ander zeezoogdier. Ook dan gaan de bultruggen zich ermee bemoeien. Ze zijn goed bewapend. Ze hebben bijzonder lange en beweeglijke borstvinnen met een harde, knobbelige rand waarop vaak ook nog scherpe zeepokken groeien (zeepokken zijn kreeftachtigen in een harde behuizing). Als ze daarmee slaan, blijven de orka’s op afstand. De bultruggen klappen ook met hun staart, brullen of gaan achter de orka’s aan. Het treffen kan een paar uur duren, maar de orka’s druipen tenslotte af. En soms hebben de bultruggen het beoogde slachtoffer kunnen redden.

Dat de orka’s andere diersoorten helpen, ziet Pitman als een bijeffect van de hulp die ze aan hun soortgenoten geven. Bultruggen zijn de enige walvissen die zoogdieretende orka’s verjagen; er zijn ook visetende orka’s, maar die laten ze met rust.
De andere zeezoogdieren profiteren van hun optreden. Bultruggen zien er vervaarlijk uit en tegen orka’s zijn ze behoorlijk agressief. Maar verder zijn het grote, vriendelijke reuzen.

Willy van Strien

Foto’s:
Groot: bultrug. Christopher Michel (Wikimedia Commons, CC BY 2.0)
Klein: orka’s. Robert Pitman (Wikimedia Commons, Public Domain)

Bron:
Pitman, R.L., V.B. Deecke, C.M. Gabriele, M. Srinivasan, N. Black, J. Denkinger, J.W. Durban, E.A. Mathews, D.R. Matkin, J.L. Neilson, A. Schulman-Janiger, D. Shearwater, P. Stap & R. Ternullo, 2016. Humpback whales interfering when mammal-eating killer whales attack other species: Mobbing behavior and interspecific altruism? Marine Mammal Science, 20 juli online. Doi: 10.1111/mms.12343

Geen tijd te verliezen

Kikkervisjes zijn er razendsnel uit als het moet

Zit er een slang aan de eitjes van de roodoogmakikikker? Hup, hup, hup: de kikkervisjes gaan er allemaal vandoor. Kristina Cohen en collega’s laten zien hoe deze kikkervisjes supersnel het ei weten te verlaten.  

Larven van de roodoogmakikikker hebben vaak geen haast om uit het ei te komen. Moeder kikker heeft de eitjes in een klompje van veertig aan de onderkant van een blad geplakt, in een klodder gelei. Ze koos een blad dat boven het water hangt, zodat kikkervisjes daarin vallen en zich verder kunnen ontwikkelen tot kleine kikkertjes. Vijf dagen nadat de eitjes zijn gelegd zijn de larven oud genoeg om uit te komen en de eerste wagen dan al de stap naar buiten.
Maar de meeste verlaten het ei pas na een dag of zeven en sommige wachten zelfs tot tien dagen. Omdat de ontwikkeling in het ei gewoon doorgaat zijn kikkervisjes die later uitkomen groter en sterker, en daardoor beter in staat om te vluchten voor roofvijanden in het water. Vandaar dat ze zich niet haasten.

Gevaar

Tenzij….. de eitjes in gevaar zijn, had Karen Warkentin al eens laten zien. Bijvoorbeeld als een slang ze wil opeten. In dat geval floepen de kikkervisjes allemaal razendsnel naar buiten en zijn in enkele minuten alle eitjes leeg. De slang heeft het nakijken.
Zo’n plotselinge geboortepiek treedt ook op als de eitjes worden bedreigd door andere roofvijanden, gaan beschimmelen, beginnen uit te drogen of in het water komen te hangen. Als ze maar minstens vijf dagen oud zijn.

De roodoogmakikikker, Agalychnis callidryas, is een boomkikker uit de tropische regenwouden van Midden-Amerika. Het is een kleurrijk en fotogeniek beestje. Vrouwtjes zijn zeven centimeter groot, mannetjes vijf.
Hij is niet de enige kikker waarvan de eitjes versneld uitkomen in geval van nood. Dat gebeurt bij meer kikkers die hun eitjes op het droge leggen, bijvoorbeeld bij de Fleischmann glaskikker: zijn eitjes komen vervroegd uit als ze dreigen uit te drogen.

Opgespaard enzym

De vraag was hoe de kikkervisjes zich zo snel naar buiten weten te werken.
Van kikkers die hun eitjes in het water leggen was namelijk bekend dat het uitkomen een langdurig proces is van uren of zelfs dagen. Kliercellen in het embryo scheiden geleidelijk enzymen uit die het ei-omhulsel afbreken.
Met deze langzame enzymmethode zouden de larven van de roodoogmakikikker geen schijn van kans hebben als een slang toehapt, dat is duidelijk.

Hoe doen ze het dan wel? Breken ze misschien met fysiek geweld naar buiten?
Nee, zo blijkt nu uit onderzoek van Kristina Cohen. Ze laat zien dat ook deze kikkervisjes een afbraakenzym maken om uit te komen, maar dat ze het opsparen. De kliercellen die het enzym produceren zitten allemaal voor op de kop, dicht opeen gepakt. En ze zitten barstensvol blaasjes met het enzym. Wil een beestje eruit, dan leegt het al die blaasjes tegelijk, zodat onmiddellijk precies voor de snuit een gaatje in het ei-omhulsel ontstaat. Het steekt zijn snuit erin en werkt zich met slingerende zwembewegingen naar buiten. Het hele proces duurt gemiddeld slechts 20 seconden; een kikkervisje dat meteen gaat zwemmen is er met zes seconden uit, een treuzelaar heeft vijftig seconden nodig. Dat is heel wat anders dan het geleidelijke proces dat bekend was van eitjes in het water.

Overlevingskans

Dankzij de opslag van het enzym in de kop kan een kikkervisje van de roodoogmakikikker dus zeer snel uit zijn ei komen op een zelf te kiezen tijdstip, als hij tussen vijf en tien dagen oud is. Elk kikkervisje in een groepje eitjes maakt zijn eigen afweging: uitbreken of wachten.
Maar dreigt er groot gevaar, dan schieten ze allemaal tegelijk naar buiten om aan dat gevaar te ontsnappen, ook als ze nog wat jong zijn. Ze zijn dan wel minder weerbaar tegen roofvijanden in het water, maar hebben tenminste een kans om te overleven. Die kans was boven water verkeken.

Willy van Strien

Foto’s:
Groot: volledig ontwikkelde kikkervisjes in het ei. Geoff Gallice (Wikimedia Commons, CC-BY 2.0)
Klein: roodoogmakikikker. Geoff Gallice (Wikimedia Commons, CC BY 2.0)

De onderzoekers vertellen hoe kikkervisjes van roodoogmakikikker versneld uitkomen

Zie ook: vroeg uit het ei

Bronnen:
Cohen, K.L., M.A. Seid & K.M. Warkentin, 2016. How embryos escape from danger: the mechanism of rapid, plastic hatching in red-eyed treefrogs. Journal of Experimental Biology 219: 1875-1883. Doi:10.1242/jeb.139519
Warkentin, K.M., 1995. Adaptive plasticity in hatching age: a response to predation risk trade-offs. PNAS 92: 507-3510. Doi: 10.1073/pnas.92.8.3507

Gezonde jas

Eetbare schimmel helpt mieren ook tegen infecties

Werksters van Acromyrmex echinatior bedekken het broed met schimmel

Een gewas, twee toepassingen: schimmelkwekende mieren gebruiken hun schimmel niet alleen als bron van voedsel, maar ook als middel tegen ziekteverwekkers. De tuinschimmel helpt om eitjes, larven en poppen gezond te houden, laten Sophie Armitage en collega’s zien.

Ruim tweehonderd soorten mieren kweken een schimmel in hun nest en eten de oogst. De meeste van die schimmelkwekende soorten gebruiken hun gewas ook nog voor iets anders: ze bedekken er de eitjes, larven en poppen mee. Deze mieren hebben geen cellen voor hun broed, zoals bijvoorbeeld honingbijen hebben, en de larven spinnen geen cocon waarin ze verpoppen. Alles ligt open en bloot, maar de werksters dekken het dus vaak af met tuinschimmel.

Sophie Armitage en collega’s zagen dat ook. Ze houden in het lab een aantal kolonies van Acromyrmex echinatior, een schimmelkwekende bladsnijdermier uit Panama die zijn eitjes, larven en poppen vaak met schimmel toedekt. Ze namen poppen uit de kolonies, ontdeden die van hun schimmeljas, legden ze in een schaaltje waarin ook een stuk schimmeltuin lag en zetten er een aantal werksters bij. Die kwamen vlot in actie. Binnen drie uur sleepten ze de poppen naar de schimmel, likten ze schoon, trokken plukjes schimmel uit het tuinfragment en brachten die op de poppen aan. Zulke plukjes groeien daarna naar elkaar toe en vormen een donzig omhulsel.

Ziekte

De biologen wilden weten waarom die mieren dat doen. De meest waarschijnlijke verklaring, dachten ze, is dat de kweekschimmel de eitjes, larven en poppen beschermt tegen infecties met ziekmakende micro-organismen. Die gedijen namelijk prima in de warme, vochtige nesten vol met mogelijke slachtoffers. Met experimenten gingen ze na of dat inderdaad zo is.

Ze besmetten zowel poppen met een tuinschimmeljas als naakte poppen met sporen van een schimmel die insecten kan aantasten en keken of de tuinschimmel die ziekteverwekker bestrijdt. De poppen lagen in deze proeven buiten de kolonies en werden niet verzorgd door werksters.
De tuinschimmel onderdrukte inderdaad de ziekmakende schimmel. Hij hield diens groei niet helemaal tegen, maar remde hem wel af: de ziekteschimmel groeide op blote poppen sneller.
Dat helpt in een kolonie, want het geeft de werksters meer tijd om de ziekteverwekker van besmette poppen af te halen voordat die zich definitief vestigt en de poppen eraan bezwijken. Waarschijnlijk maakt de tuinschimmel stofjes waar de ziekteverwekker niet goed tegen kan.

Kliercocktail

Werkster van Acromyrmex echinatiorSchimmelkwekende mieren hebben, naast de tuinschimmel, nog een middel tegen microbiële infecties. Ze hebben speciale klieren die een cocktail van zo’n twintig actieve stofjes maken (de metapleurale klieren); met hun poten kunnen ze die cocktail over het broed uitsmeren.
Ook Acromyrmex echinatior past de kliercocktail toe als het broed door de ziekteschimmel wordt bedreigd. Armitage deed proeven waarin ze werksters bij besmette poppen met en zonder schimmeljas toeliet. Uit de resultaten blijkt dat de werksters vaker kliermengsel op naakte poppen smeren. Kennelijk hebben die poppen, zonder beschermende jas, het middel harder nodig.

Eerste landbouwers

Eerder vergelijkend onderzoek aan meerdere soorten schimmelkwekers had laten zien dat de gewoonte om eitjes, larven en poppen met tuinschimmel te bedekken snel is ontstaan toen de eerste mieren schimmels gingen kweken, zo’n 50 miljoen jaar geleden. De meeste soorten die van die eerste landbouwers afstammen hebben de oude gewoonte aangehouden; sommige hebben hem weer afgeschaft en maken alleen gebruik van het kliermengsel.

Het spreekt eigenlijk vanzelf dat de eetbare schimmel anti-microbiële stoffen maakt. Schimmels moeten zich tenslotte tegen hun concurrenten en vijanden kunnen verdedigen. Voor de schimmelkwekende mieren is dat mooi meegenomen, zoals ze al heel snel in de gaten hebben gehad.

Willy van Strien

Foto’s: ©David R. Nash
Groot: werksters van Acromyrmex echinatior, naakte poppen en schimmel. Klein: een werkster

Zie ook:
Een hele zorg over het tuinonderhoud
Een kleine landbouwgeschiedenis over de evolutie van schimmelkwekende mieren

Bronnen:
Armitage, S.A.O., H. Fernández-Marín, J.J. Boomsma & T. Wcislo, 2016. Slowing them down will make them lose: a role for attine ant crop fungus in defending pupae against infections? Journal of Animal Ecology, 8 juni online. Doi: 10.1111/1365-2656.12543
Armitage, S.A.O., H. Fernández-Marín, W.T. Wcislo & J.J. Boomsma, 2012. An evaluation of the possible adaptive function of fungal brood covering by attine ants. Evolution 66: 1966-1975. Doi: 10.1111/j.1558-5646.2011.01568.x

« Oudere berichten Nieuwere berichten »

© 2025 Het was zo eenvoudig begonnen

Thema gemaakt door Anders NorenBoven ↑