Kleur bekennen

Egeïsche muurhagedis met witte keel is dapperder

Egeïsche hagedis met witte keel is dapperder

Voor de Egeïsche muurhagedis geldt: wie het meest opvallende kleurtje heeft, gaat er het snelste vandoor als er een vijand opdoemt, schrijven Kinsey Brock en Indiana Madden.

Van de Egeïsche muurhagedis, Podarcis erhardii, komen verschillende kleurvormen voor: de dieren hebben een witte, gele of oranje keel. Ze zijn te vinden op muurtjes in het zuidoosten van Europa, in een droog landschap met stugge struiken. Ze hebben verschillende roofvijanden: slangen, vogels en zoogdieren.

Verschijnt er een roofvijand, dan zal een hagedis vluchten. Maar dat betekent wel dat hij moet stoppen met wat hij deed: zonnen of voedsel zoeken. Hij gaat er daarom pas vandoor als het echt nodig is. Kinsey Brock en Indiana Madden wilden weten of de drie kleurvormen dezelfde ‘vluchtafstand’ hebben of niet. Ze gingen na tot welke afstand ze een hagedis konden benaderen voor hij op de vlucht sloeg.

Voorzichtig

De keelkleur van de Egeïsche muurhagedis is erfelijk bepaald. De meeste dieren, zowel mannen als vrouwen, hebben een witte keel; geel en oranje komen minder vaak voor. Er zijn ook dieren met een tweekleurige keel, maar die zijn zeldzaam. Brock en Madden deden hun onderzoek op het Griekse eiland Naxos, aan hagedissen met een effen keelkleur.

Je kunt muurhagedissen met een witte keel het meest dicht benaderen, constateerden ze; hagedissen met een oranje keel gaan er het snelst vandoor; geel-gekeelde dieren zitten ertussenin.

Dieren met een oranje keel zijn dus het voorzichtigst. Ze blijven ook altijd het dichtst in de buurt van een vluchtplaats: een spleet in een muur of dichte begroeiing. En als ze zijn gevlucht, komen ze minder snel weer tevoorschijn dan dieren met gele of witte kelen.

Het sluit aan bij labonderzoek dat liet zien dat mannen met een witte keel het meest agressief, brutaal en dapper zijn.

Afstekende kleur

Dat een Egeïsche muurhagedis met oranje keel meer op zijn hoede is, zal zijn omdat hij meer opvalt. Het grijsbruine vlekkerige lichaam heeft een schutkleur, maar een gele, en vooral een oranje keel steekt af tegen de achtergrond. Een roofvijand ontdekt een hagedis met een oranje keel daardoor makkelijker, dus die moet op zijn beurt eerder wegschieten om de vijand te snel af te zijn.

Willy van Strien

Foto: Mannetje Podarcis erhardii met witte keel. Gailhampshire (Wikimedia Commons, Creative Commons CC BY 2.0)

Bron:
Brock, K.M. & I.E. Madden, 2022. Morph‑specific differences in escape behavior in a color polymorphic lizard. Behavioral Ecology and Sociobiology 76: 104. Doi: 10.1007/s00265-022-03211-8

Succesvol als poepje

Krabspin vermomt zich als verse vogelflats

krabspin Phrynarachnae ceylonica imiteert vogelpoepje

Het ziet eruit en het ruikt als een vogelpoepje. Maar het is de krabspin Phrynarachne ceylonica, die in deze vermomming rustig wacht tot een vliegje argeloos naast haar gaat zitten, laten Long Yu en collega’s zien.

Krabspinnen komen aan hun maaltjes door roerloos te gaan zitten wachten tot er een prooidier binnen bereik komt. Dan kunnen ze plotseling toeslaan. Het helpt daarbij als ze niet op een spin lijken, maar zich vermommen. Zo heeft Phrynarachne ceylonica succes als vochtig vogelpoepje, schrijven Long Yu en collega’s.

Deze krabspin lijkt niet alleen op een verse flats, maar ruikt ook zo. Bekend was al dat ze daarmee haar roofvijanden, zoals grotere springspinnen, misleidt; die zien haar letterlijk niet zitten.

De spin komt voor in Sri Lanka, China, Japan en Taiwan.

Mineervliegen

Nu blijkt die vermomming dubbel nuttig. De stiekeme spin trekt namelijk smakelijke insecten aan, constateert Yu, die een aantal jonge en vrouwelijke krabspinnen in het veld observeerde. Vooral mineervliegjes komen eropaf. De larven van deze vliegjes vreten gangen in bladeren, maar volwassen exemplaren hebben een ander dieet, en voor hen is verse vogelpoep een fijne bron van voedingsstoffen.

Yu verfde een aantal krabspinnen helemaal wit of zwart; deze geverfde spinnen trokken de vliegjes niet aan.

Hij laat zien dat de krabspin Phrynarachne ceylonica in de ogen van insecten dezelfde kleuren heeft als verse vogelpoep. Met wat spinsel bootst de spin een begin van uitdroging langs de randen na. En het werkt: er landen insecten vlak naast haar. De spin trekt er minder dan een echt vogelpoepje, maar dat is niet erg als ze al na één maaltje verzadigd is.

Jammer genoeg melden de onderzoekers niet of de krabspinnen de vliegjes inderdaad pakken en opeten.

Willy van Strien

Foto: LiCheng Shih (Wikimedia Commons, Creative Commons CC BY 2.0)

Een andere krabspin vermomt zich als bloem

Bron:
Yu, L., X. Xu, Z. Zhang, C.J. Painting, X. Yang & D. Li, 2021. Masquerading predators deceive prey by aggressively mimicking bird droppings in a crab spider. Current Zoology, 24 juli online. Doi: 10.1093/cz/zoab060

Geduld oefenen

Slang en kikker wachten tot de ander in actie komt

slang moet niet te snel aanvallen

Als slang en kikker elkaar ontmoeten, begint een uithoudingsspel. Degene die als eerste beweegt, neemt een risico, laten Nozomi Nishiumi en Akira Mori zien. Komt de slang in actie, dan ziet hij zijn prooi ontsnappen. Springt de kikker weg, dan wordt hij gegrepen.

kikker moet niet te snel wegspringenTerwijl de slang langzaam dichterbij komt glijden, blijft de kikker roerloos zitten. Ziet die kikker het gevaar niet? Of kan hij niet vluchten omdat hij bevroren is van angst? Geen van de twee, schrijven Nozomi Nishiumi en Akira Mori. Zo lang mogelijk blijven zitten is de beste strategie.
De biologen onderzochten in Japan hoe ontmoetingen verlopen tussen de toornslang Elaphe quadrivirgata en een van zijn prooien, de groene kikker Pelophylax nigromaculatus. De spanning loopt op, zo bleek in confrontatie-experimenten, omdat geen van beide dieren snel actie onderneemt. En daar hebben ze een goede reden voor.

Onderschept

De kikker zou natuurlijk kunnen vluchten door weg te springen als de slang dichterbij komt. Maar dan is hij in het nadeel. Als hij zich namelijk eenmaal heeft afgezet, kan hij zijn snelheid en richting niet meer veranderen. De slang zal onmiddellijk reageren en er waarschijnlijk in slagen om de kikker in zijn sprong te onderscheppen. De kikker kan dus maar het beste roerloos blijven zitten.
Maar ook de naderende slang moet geduld oefenen en geen uitval naar de kikker doen. Want als zijn kop eenmaal naar voren schiet, kan hij niet meer bijsturen. De kikker kan de aanval ontwijken door weg te springen, en de kans is groot dat hem dat lukt. De slang kan dan nog een poging doen om de kikker te grijpen, maar hij verliest tijd doordat hij eerst weer in de juiste positie moet gaan liggen.

En dus wachten beide partijen op initiatief van de ander. Wie dat als eerste opgeeft, neemt risico. Soms is het de kikker die als eerste tot actie overgaat en springt – met een grote kans dat hij gegrepen wordt. Andere keren gaat de slang opeens tot de aanval over – en zal de kikker waarschijnlijk ontkomen.

Kansloos

Maar als beide partijen dat volhouden, moet er uiteindelijk toch iets gebeuren. Op een goed moment moeten ze omschakelen van afwachten naar actie ondernemen. Als de slang de kikker tot op ongeveer zes centimeter is genaderd, kan die niet meer ontsnappen. De slang kan dan succesvol toeslaan. De kikker kan daar beter niet op wachten: net voordat de slang gevaarlijk dichtbij is en zal aanvallen, moet hij wegspringen. Dat kan verkeerd voor hem aflopen, maar ontsnapping is dan tenminste nog niet uitgesloten.

Het is een spel van geduld, maar ook een spel op leven en dood. In die zin zijn de proeven, waarin slang en kikker bij elkaar worden gezet, wat wreed, omdat sommige kikkers worden opgegeten. Maar, zo schrijven de onderzoekers in een ethische verantwoording, in de natuur is dit dagelijkse praktijk.

Willy van Strien

Foto’s:
Groot: Elaphe quadrivirgata. Ʃ64 (Wikimedia Commons, Creative Commons CC BY 3.0)
Klein: Pelophylax nigromaculatus. Alpsdake (Wikimedia Commons, Creative Commons, CC BY-SA 3.0; gespiegeld)

Bron:
Nishiumi, N. & A. Mori, 2020. A game of patience between predator and prey: waiting for opponent’s action determines successful capture or escape. Canadian Journal of Zoology 98: 351-357. Doi: 10.1139/cjz-2019-0164

Mangrovekwal steekt op afstand

Slijm zit stampvol bolletjes met netelcellen

Mangrovekwal stoot slijm uit met stekende celbolletjes

Het water rondom mangrovekwallen is gevaarlijk voor kleine beestjes en prikkelend voor snorkelaars. Beweeglijke celstructuren, afgescheiden door de kwallen, zijn daar verantwoordelijk voor, laten Cheryl Ames en collega’s zien.

De mangrovekwal Cassiopea xamachana zwemt niet rond, zoals kwallen normaal gesproken doen, maar strijkt ondersteboven neer op modderige bodems van mangrovebossen, zeegrasvelden of ondiepe baaien, zijn acht mondarmen met uitbundig vertakte flappen omhoog. De kwal komt voor in warme gedeelten van de westelijke Atlantische Oceaan, de Caribische Zee en de Golf van Mexico, vaak in grote groepen.
Het liggende bestaan is niet het enige ongewone van dit dier. Apart is ook dat in zijn geleiachtige lijf eencellige algachtige organismen leven, de zogenoemde zoöxanthellen. Net als planten maken die koolhydraten en zuurstof uit koolstofdioxide en water, met behulp van energie uit zonlicht. Een deel van de koolhydraten staan ze af aan de kwal, in ruil voor hun comfortabele en veilige onderkomen.

En dan is er nog een derde eigenaardigheid: water rondom een groep mangrovekwallen ‘steekt’, zoals snorkelaars weten. Cheryl Ames en collega’s ontdekten hoe de mangrovekwal dat voor elkaar krijgt.

Beweeglijke celbolletjes

De koolhydraten die de mangrovekwal aan zijn inwonende micro-organismen ontleent, zijn de belangrijkste bron van energie. Maar de kwal heeft ook eiwitten nodig. Daarom vult hij zijn dieet aan met dierlijk voedsel.
Om prooien te vangen hebben kwallen netelcellen. Deze cellen dragen netelblaasjes, een soort van harpoentjes, en zijn voorzien van een gifmengsel; de harpoentjes kunnen kleine beestjes verlammen of doden. De steken schrikken bovendien bedreigers af.
De mangrovekwal heeft netelcellen op zijn mondarmen. Het dier ligt te pulseren en veroorzaakt daarmee bewegingen in het water die prooidiertjes naar de armen drijft, waar ze gevangen worden. Maar hij steekt, in tegenstelling tot andere kwallen, ook op afstand. Hoe doet hij dat?

Als er prooidiertjes zijn of als de kwal verstoord wordt, zo blijkt uit het huidige onderzoek, stoot hij grote hoeveelheden slijm uit. Daarin zitten microscopisch kleine bolletjes met een bobbelig oppervlak. Ze hebben aan de buitenkant een laag cellen, namelijk netelcellen en opperhuidcellen met zweepharen. De inhoud is geleiachtig als de kwal zelf; vaak zitten er zoöxanthellen in.

Dodelijk

De celbolletjes, die de onderzoekers cassiosomen hebben genoemd, worden in grote hoeveelheden aangemaakt op de armen van de kwal. Bij verstoring begint hij ze na vijf minuten uit te stoten in een wolk slijm en gaat daar uren mee door. Dankzij de zweepharen zijn de bolletjes beweeglijk. Ze zwemmen een kwartier lang rond in het slijm en zakken dan naar beneden; daar blijven ze nog dagenlang kruipen en draaien. Ze worden geleidelijk gladder en kleiner en vallen uiteindelijk uit elkaar.

De cassiosomen zijn in staat prooidiertjes te doden, blijkt uit proeven in het lab. Een pekelkreeftje bijvoorbeeld is vaak op slag dood als hij met zo’n bolletje in aanraking komt.

Terwijl ze met hun werk bezig waren, ondervonden de onderzoekers zelf dat het water in de proefbakken stak.

Van alle eigenaardigheden die de mangrovekwal heeft, is dit misschien wel de vreemdste: stukjes kwal die los van het eigenlijke lichaam dagenlang in leven blijven en de kwal helpen prooien te vangen en vijanden af te schrikken. De onderzoekers weten inmiddels dat een handvol nauw verwante soorten kwallen vergelijkbare kleine ‘granaten’ afscheidt.
De celbolletjes in het slijm van de mangrovekwal waren al eerder gezien, aan het begin van de twintigste eeuw, maar men dacht dat het parasieten waren. Dat het kwalweefsel was had toen niemand kunnen denken.

Willy van Strien

Foto: Bjoertvedt (Wikimedia Commons, Creative Commons CC BY-SA 4.0)

Bron:
Ames, C.L., A.M.L. Klompen, K. Badhiwala, K. Muffett, A.J. Reft, M. Kumar, J.D. Janssen, J.N. Schultzhaus, L.D. Field, M.E. Muroski, N. Bezio, J.T. Robinson, D.H. Leary, P. Cartwright, A.G. Collins & G.J. Vora, 2020. Cassiosomes are stinging-cell structures in the mucus of the upside-down jellyfish Cassiopea xamachana. Communications Biology 3: 67. Doi: 10.1038/s42003-020-0777-8

Bescheiden vleeseter

Jong herderstasje groeit beter met dierlijke voeding

herderstasje is carnivoor bij ontkieming

Zaden van het herderstasje ontlenen voedingsstoffen aan bodemdieren, die ze lokken, doden en verteren, ontdekten Hattie Roberts en collega’s. Het herderstasje is als zaad en kiemplant dus een carnivoor.

De meeste vleesetende planten zijn bijzonder om te zien. Bekerplant, blaasjeskruid, venusvliegenvanger en zonnedauw vangen kleine beestjes met opvallende bekers, vernuftige vallen of kleverige bladeren.
Maar wie zou het herderstasje verdenken van een dierlijk dieet? Deze plant, die vrijwel overal voorkomt, ziet er heel onschuldig uit. Toch kan hij diertjes vangen en hun eiwitten gebruiken als hij ontkiemt, schrijven Hattie Roberts en collega’s. Er zijn onder planten kennelijk ook minder spectaculaire vleeseters of carnivoren.

Dierlijke eiwitten

zaden van herderstasje lokken en doden kleine bodemdiertjes

Het herderstasje (Capsella bursa-pastoris) vangt als plant geen beestjes, maar de zaadjes doen dat wel. Ze krijgen in vochtige bodem een taaie, plakkerige slijmlaag. Heel wat jaren geleden liet John Barber al zien dat kleine bodembeestjes op ontkiemende zaadjes af komen omdat die een lokstof uitscheiden. De beestjes – Barber deed proeven met muggenlarven – plakken aan de zaadjes vast en gaan dood door een gifstof. De zaadjes produceren ook enzymen die eiwitten van hun slachtoffers verteren en nemen de bouwstenen, aminozuren, vervolgens op.
Het lijkt er dus op, stelde Barber, dat de zaadjes dierlijke voedingsstoffen gebruiken. Ze lokken en doden ook aaltjes (rondwormen), eencellige organismen en bacteriën.

Wat extra’s

Nu maakt Hattie Roberts het verhaal rond. Ze liet zaadjes kiemen in aanwezigheid van aaltjes of zonder deze bodemdiertjes en volgde de groei van de jonge plantjes. Haar proeven laten zien dat dierlijke voedingsstoffen de zaadjes een betere start geven.
In grond waaraan aaltjes waren toegevoegd ontkiemden meer zaadjes succesvol dan in grond zonder aaltjes, en de zaailingen waren na tien dagen groter en zwaarder. Drie weken later werkte het effect nog steeds door: jonge plantjes die in grond met aaltjes waren ontkiemd hadden langere wortels en grotere bladeren.
Hoewel zaadjes van het herderstasje dus kunnen ontkiemen zonder voedingsstoffen die van dieren afkomstig zijn, doen ze het beter met. Dierlijke voedingsstoffen hadden op voedselarme grond meer effect dan op voedselrijke grond.

Herderstasje heeft kleine zaadjes, waarin voor de kiemplant maar een minieme voedselvoorraad aanwezig is. Dat verklaart dat de zaadjes goed wat extra’s kunnen gebruiken en dat de planten aan het begin van hun leven carnivoor zijn.

Willy van Strien

Foto’s:
Groot: herdertasje. Harry Rose (Wikimedia Commons, Creative Commons CC BY 2.0)
Klein: zaden van herderstasje. Kinori (Wikimedia Commons, public domain)

Zie ook:
Vleesetende planten met spectaculaire vangstmethoden: bekerplanten, blaasjeskruid, venusvliegenvanger en zonnedauw

Bronnen:
Roberts, H.R., J.M. Warren & J. Provan, 2018. Evidence for facultative protocarnivory in Capsella bursa-pastoris seeds. Scientific Reports 8: 1012. Doi: 10.1038/s41598-018-28564-x
Barber, J.T., 1978. Capsella bursa-pastoris seeds. Are they “carnivorous”? Carnivorous Plant Newsletter 7: 39-42.

Kleine hapjes, grote slokken

Duizenden kreeftjes zuigt kleine alk per dag op

kleine alk eet bijna als een walvis

Kleine alken hebben een voor vogels bijzondere manier om voedsel te vergaren, laten Manfred Enstipp en collega’s zien. De vogels eten ‘bijna als een walvis’, staat boven hun publicatie.

Het is een lastige prooi waar de kleine alk naar zoekt, een zeevogel die al duikend in zee aan de kost komt. Hij leeft voornamelijk van piepkleine eenoogkreeftjes (ook wel roeipootkreeftjes genoemd) en heeft er naar schatting 60.000 per dag nodig. Het valt niet mee om die te pakken te krijgen, want ze kunnen er razendsnel vandoor gaan. Het is hoe dan ook moeilijk om iets kleins in het water te grijpen: het glipt tussen je vingers weg als je het probeert. Hoe krijgt een alk voldoende kreeftjes binnen?
Door gewoon maar met open bek door het water te zwemmen en de beestjes eruit te zeven, veronderstelden Manfred Enstipp en collega’s. Maar toen ze met hogesnelheidscamera’s kleine alken filmden in een proefbassin met eenoogkreeftjes en de beelden bekeken, bleek dat niet te kloppen.

Walvis

De kleine alken, zo zagen de onderzoekers, gaan gericht te werk. Ze zoeken met de ogen het water af naar prooien. Ontdekken ze een kreeftje, dan gaan ze er met gestrekte nek naartoe. Ze rekken hun keelzak op, zodat er onderdruk ontstaat in de mondholte, en openen hun snavel een beetje. Een flinke slok water, met kreeftje en al, wordt dan naar binnen gezogen.
De vogel houdt de prooi vervolgens tegen terwijl hij met zijn dikke tong het overtollige water naar buiten perst door neusgaten en kieren aan de achterkant van de snavel. De hele procedure duurt een halve seconde. Door op deze manier snel achter elkaar kreeftjes binnen te halen – en met wat geluk heeft hij soms er twee tegelijk – krijgt een kleine alk zijn maaltje wel bij elkaar.

Veel vissen passen deze zuigmethode toe om prooien te vangen, maar voor een vogel is het bijzonder. Het doet een beetje denken aan de manier waarop baleinwalvissen aan hun voedsel komen: grote hoeveelheden water innemen en tussen de baleinen door naar buiten persen, waarbij het plankton achterblijft.

Kleine alken broeden in het hoge noorden. Ze zijn ’s winters soms aan de Nederlandse en Belgische kust te zien; bij sterke storm worden ze soms een stuk landinwaarts geblazen.

Willy van Strien

Foto: Allan Hopkins (via Flickr, Creative Commons CC BY-NC-ND 2.0)

Bron:
Enstipp, M.R., S. Descamps, J. Fort & D. David Grémillet, 2018. Almost like a whale – First evidence of suction-feeding in a seabird. Journal of Experimental Biology, 29 mei online. Doi: 10.1242/jeb.182170

Een geluk bij een ongeluk

Vogel vervoert eitjes van wandelende tak die hij opat

Bruinoorbuulbuul verspreidt eitjes van wandelende takken

Sommige wandelende takken lijken nog meer op planten dan je op het eerste gezicht zou denken. Net als de zaden van veel planten kunnen de eitjes door een vogel worden verspreid, laten Kenji Suetsugu en collega’s zien.

De camouflage van wandelende takken is perfect: ze vallen tussen de planten niet op. Toch weten insectenetende vogels hen nogal eens te vinden en te pakken. En dat is dan einde verhaal voor zo’n beestje.
Of misschien toch niet helemaal, melden Kenji Suetsugu en collega’s. Als een onfortuinlijke vrouwelijke wandelende tak rijpe eitjes bij zich draagt, komen sommige daarvan ongeschonden met de vogelpoep naar buiten. Er kan dan zelfs een jong insect uit komen.

Jonkie

De onderzoekers, die werkzaam zijn in Japan, stelden vast dat de eitjes van wandelende takken lijken op plantenzaden: ze hebben dezelfde grootte en kleur en voelen hetzelfde aan dankzij een hard omhulsel. Ze kwamen op het idee dat de eitjes misschien net als plantenzaden een gang door een vogeldarm kunnen overleven. Veel plantensoorten maken vruchten die door vogels of andere dieren worden opgegeten; de zaden blijven intact, worden uitgepoept en ontkiemen. Is iets vergelijkbaars met de insecteneitjes mogelijk?
sommige eitjes van wandelende takken komen intact uit vogeldarmOm het uit te zoeken mengden ze rijpe eitjes van drie soorten wandelende takken met vogelvoer dat ze gaven aan een bruinoorbuulbuul, een van de belangrijkste roofvijanden van de insecten. Ze bekeken daarna diens uitwerpselen onder een stereomicroscoop.
Ze vonden inderdaad een klein aantal eitjes intact terug, en uit een paar van die eitjes kwam later een jong wandelend takje.
Dat moet dan ook lukken als een vogel een vrouwtje met rijpe eitjes heeft ingeslikt, denken de auteurs. De jonkies die na een reis door een vogeldarm uitkomen zouden zelf een geschikte plant moeten vinden om op te leven, maar dat is altijd zo. Een vrouwtje laat haar eitjes normaal gesproken namelijk op de grond vallen en kijkt er niet meer naar om.

Maagdelijk

jonge wandelende tak, uit eitje dat vogeldarm passeerde

Wandelende takken lijken dus niet allen qua uiterlijk op planten, maar hebben nog een verrassend plantaardig trekje: vogels geven de nakomelingen een lift. Voor insecten is dat een unieke gang van zaken.
Het kan alleen bij soorten die zich maagdelijk voortplanten. Dan dragen vrouwtjes namelijk eitjes bij zich die zich kunnen ontwikkelen zonder dat ze bevrucht hoeven worden. Bij wandelende takken komt een aantal soorten met maagdelijke ontwikkeling voor, waaronder de soorten die nu onderzocht zijn.

Vliegroutes

Verspreiding van insecteneitjes via een vogeldarm is niet helemaal vergelijkbaar met de verspreiding van plantenzaden. Zaden zitten in vruchten die een plant speciaal maakt voor de zaadverspreiding; ze zijn er om opgegeten te worden. Het vrouwtje van een wandelende tak laat zich natuurlijk niet expres door een vogel pakken om haar eitjes een lift te bezorgen – camouflage dient juist om dat lot te voorkomen. Maar als ze pech heeft en een vogelmaaltje wordt, dan is het meegenomen als er eitjes overleven en uitkomen, ook al zijn het er maar weinig.
De stevige eitjes zijn overigens geen aanpassing aan verspreiding via vogels, denken de auteurs. Het harde omhulsel zal eerder dienen om sluipwespen tegen te houden die hun eitjes in die van de wandelende takken willen leggen.

Wandelende takken zijn niet mobiel. Dankzij vogels kunnen ze wellicht toch nieuwe leefgebieden bereiken. Interessant is de vraag of de verspreidingspatronen van de insecten, zoals die met dna-onderzoek te achterhalen zijn, samenvallen met vliegroutes van vogels. Dat zou het verhaal ondersteunen dat de eitjes soms als plantenzaden worden verspreid.

Willy van Strien

Foto’s
Groot: Bruinoorbuulbuul (tong zichtbaar). Alpsdake (Wikimedia Commons, Creative Commons BY-SA 4.0)
Klein: eitjes van een wandelende tak (Ramulus irregulariterdentatus) die het spijsverteringskanaal van een vogel passeerden en een jonge wandelende tak die uit zo’n eitje kwam. ©Kenji Suetsugu

Bron:
Suetsugu, K., S. Funaki, A. Takahashi, K. Ito & T. Yokoyama, 2018. Potential role of bird predation in the dispersal of otherwise flightless stick insects. Ecology, 29 mei online. Doi: 10.002/ecy.2230

Instinkers

Aronskelk lokt bromvliegen en hagedis met kadavergeur

Dood-paard-aronskelk is aantrekkelijk voor balearenhagedis

De aronskelk Helicodiceros muscivorus ruikt als een rottend dood beest. Daar komen bromvliegen en een hagedis op af. Ana Pérez-Cembranos en collega’s beschrijven de complexe relaties tussen plant, bromvliegen en hagedis: een verhaal van bedrog, misbruik en profijt.

Op eilanden in de Middellandse Zee groeit een plantje dat vreselijk stinkt, de ‘dood-paard-aronskelk’, Helicodiceros muscivorus. Zijn geur bevat chemische bestanddelen die ook een dood beest in ontbinding verspreidt. Voor een bromvliegvrouwtje is die walm onweerstaanbaar. Ze zoekt namelijk kadavers waar ze haar eitjes op kan leggen, zodat de vleesetende larven voedsel zullen hebben. De dood-paard-aronskelk maakt misbruik van haar behoefte.

De planten stinken op de eerste dag dat ze bloeien. Bromvliegen die het luchtje oppikken, kúnnen het niet negeren. Ze gaan op de bron af en vinden een roze of rood schutblad met het harige uiteinde van de bloeikolf, dat de geur produceert. Als ze landen, blijkt dat uiteinde bovendien warm te zijn. Voor de bromvliegen is de imitatie compleet: dit moet een broeiend kadaver zijn. Geleid door de warmte kruipen ze in de buis die de opgerolde basis van het schutblad vormt om het onderste deel van de bloeikolf, waar vrouwelijke en mannelijke bloemetjes op staan.
Eenmaal binnen vinden ze natuurlijk niet wat ze zoeken; geen rottend vlees te bekennen.

In de val

Maar als ze weer willen vertrekken, blijkt dat niet te kunnen. Uitsteeksels aan de bloeikolf sluiten de uitgang af. Ze zitten in de val.
En tijdens hun gevangenschap in de kamer met bloemetjes bewijzen ze de plant ongewild een dienst. Het zijn de vrouwelijke bloemen onderaan de bloeikolf die deze eerste dag in bloei zijn. Vliegen die zich al eerder door een aronskelk lieten misleiden, dragen stuifmeel van die plant bij zich en dat komt nu op de vrouwelijke bloemen terecht. Daarmee heeft de plant het eerste succes binnen: de vrouwelijke bloemen zijn bestoven.

De volgende dag zijn de vrouwelijke bloemen uitgebloeid en hebben de mannelijke bloemen hun stuifmeel klaar. De stank en de warmte verdwijnen, de uitsteeksels verwelken en de bromvliegen kunnen naar buiten. Ze passeren de mannelijke bloemen en worden met stuifmeel beladen. En zo behaalt de plant het tweede succes: de vrijgelaten bromvliegen nemen het stuifmeel mee naar vrouwelijke bloemen – als ze tenminste opnieuw een stinkende aronskelk op hun weg vinden en erin trappen.

Warmte en vliegen

Zo zijn de bromvliegen gedwongen de dood-paard-aronskelk te bestuiven zonder dat er een beloning zoals nectar tegenover staat. Integendeel: ze verliezen tijd waarin ze naar echte karkassen hadden kunnen zoeken.

Nu laten Ana Pérez-Cembranos en collega’s zien dat ook de balearenhagedis Podarcis lilfordi zich door de geur van de aronskelk laat misleiden. Het dier is omnivoor en eet soms van karkassen. Die zijn bovendien aantrekkelijk als warmtebron; hagedissen zijn koudbloedig en als het koel weer is, gaan ze graag op een broeiend karkas liggen om op te warmen. Bovendien eten ze de bromvliegen die op het aas af komen.
De hagedissen reageren op de geur van de dood-paard-aronskelk hetzelfde als op de geur van een dood dier: ze gaan erheen. Als de geur van een aronskelk afkomstig blijkt te zijn, vinden ze geen vleesmaaltje, maar wel warmte en vliegen, die ze van het schutblad pakken of uit de buis halen.

De hagedissen nemen dus een aantal bestuivers van de planten weg. Maar volgens de onderzoekers blijven er genoeg bromvliegen over om voor bestuiving te zorgen.

Besjes

De hagedis is dus geen vijand van de aronskelk. Na de bloei, als de besjes rijp zijn, ontstaat er zelfs een mooie samenwerking tussen die twee. De hagedis eet de vruchten en poept de zaden uit. Die ontkiemen beter als ze door de hagedissendarm zijn gegaan. De plant levert de hagedis voedsel en de hagedis verspreidt de zaden en verhoogt hun kiemkracht.
Op het eilandje Aire ten zuidoosten van Menorca, waar het onderzoek is gedaan, is de dood-paard-aronskelk een nieuwkomer. Hij groeit er naar schatting pas een jaar of vijftig. Hij heeft zich in die tijd in hoog tempo over het eilandje verspreid en staat er nu plaatselijk in grote dichtheden. Dat is te danken aan de hagedis, die de vruchten heeft leren eten en nu de belangrijkste zaadverspreider is, denken de onderzoekers.

Willy van Strien

Foto: Balearenhagedis op het schutblad van de aronskelk © Ana Pérez-Cembranos

Bronnen:
Pérez-Cembranos, A., V. Pérez-Mellado & W.E. Cooper, 2018. Balearic lizards use chemical cues from a complex deceptive mimicry to capture attracted pollinators. Ethology  124: 260-268. Doi: 10.1111/eth.12728
Angioy, A-M.,  M. C. Stensmyr, I. Urru, M. Puliafito, I. Collu & B. S. Hansson, 2004. Function of the heater: the dead horse arum revisited. Proceedings of the Royal Society London B 271: S13-S15. Doi: 10.1098/rsbl.2003.0111
Stensmyr, M.C., I. Urru, I. Collu. M. Celander. B.S. Hansson & A-M. Angioy, 2002. Rotting smell of dead-horse arum florets. Nature 420: 625-626. Doi: 10.1038/420625a

Tweedehands maaltje

Zeenaaktslak steelt het voedsel van zijn voedsel

zeenaaktslak Cratena peregrina steelt de prooi van zijn prooi

Het dieet van de zeenaaktslak Cratena peregrina bestaat niet alleen uit de hydroïdpoliepen waarop hij leeft. Hij pikt ook het voedsel dat de poliepen verzameld hebben, ontdekten Trevor Willis en collega’s.

Cratena pelegrina is een sprookjesachtig mooi beestje. Op zijn witte rug staan tientallen rode stekels met een lichtgevende blauwe punt – net kaarsjes. De zeenaaktslak leeft in de Middellandse Zee en het oostelijk deel van de Atlantische Oceaan op vertakte kolonies van hydroïdpoliepen, zoals Eudendrium ramosum en Eudendrium racemosum. De kolonies bieden hem een woonplaats, de poliepen zijn eetbaar en ze hebben verdedigingswapens die de zeenaaktslak goed kan gebruiken. En ze vangen ook nog eens goed voedsel, laten Trevor Willis en collega’s zien.

Hydroïdpoliepen zijn neteldieren, net als kwallen, en hebben een krans van tentakels rond de bek waarmee ze hun prooien, planktondiertjes, grijpen. Ze hebben ook netelcellen die een ‘harpoentje’ met gif kunnen afschieten om prooien te verlammen of roofvijanden af te schrikken; zo’n harpoentje heet netelblaasje of nematocyst.

Rugstekels

Maar Cratena peregrina laat zich niet afschrikken. Het was al lang bekend dat deze zeenaaktslak de poliepen kan eten zonder daar last van te hebben: hij is op de een of andere manier beschermd tegen nematocysten die worden afgevuurd terwijl hij poliepen eet. Hij krijgt ook veel nematocysten binnen die niet zijn afgeschoten. Die verteert hij niet, maar ze passeren ongeschonden het darmkanaal. Hij is er zuinig op. Sommige niet-afgeschoten en intacte nematocysten gaan met de uitwerpselen mee naar buiten, maar vele worden opgeslagen in speciale zakjes in de rugstekels.
Zo eigent de naaktslak zich de wapens van zijn prooi toe, en hij kan die inzetten om hongerige vissen af te schrikken. Vanwege de felle waarschuwingskleuren leren die gauw genoeg dat ze maar beter van dit mooie, maar gemeen stekende hapje kunnen afblijven.

Prooi van prooi

Nu laat Willis zien dat Cratena peregrina niet alleen tweedehands wapens aan de hydroïdpoliepen ontleent, maar ook het voedsel afpakt dat zij hebben gevangen. In labproeven bleek dat de naaktslakken bij voorkeur poliepen eten die net prooien te pakken hebben, in dit geval larven van pekelkreeftjes. Zo krijgt de naaktslak in één moeite twee typen voedsel binnen: zijn prooi en de prooi van zijn prooi. Het tweedehands voedsel, dierlijk plankton, blijkt een belangrijk deel uit te maken van zijn dieet – en mooi dat hij die diertjes niet zelf hoeft te vangen.

Willy van Strien

Foto: Cratena peregrina op Eudendrium ramosum. Français (Wikimedia Commons, public domain)

Mooie beelden van de zeenaaktslak op YouTube

Bronnen:
Willis, T.J., K.T.L. Berglöf, R.A.R. McGill, L. Musco, S. Piraino, C.M. Rumsey, T.V. Fernández & F. Badalamenti, 2017. Kleptopredation: a mechanism to facilitate planktivory in a benthic mollusc. Biology Letters 13: 20170447. Doi: 10.1098/rsbl.2017.0447
Greenwood, P.G., 2009. Acquisition and use of nematocysts by cnidarian predators. Toxicon 54: 1065-1070. Doi:10.1016/j.toxicon.2009.02.029
Aguado, F. & A. Marin, 2007. Warning coloration associated with nematocyst-based defences in aeolidiodean nudibranchs. Journal of Molluscan Studies 73: 23-28. Doi:10.1093/mollus/eyl026
Martin, R., 2003. Management of nematocysts in the alimentary tract and in cnidosacs of the aeolid nudibranch gastropod Cratena peregrina. Marine Biology 143: 533-541. Doi: 10.1007/s00227-003-1078-8

Energiebesparing

Venusvliegenvanger heeft zijn vallen zuinig afgesteld

venusvliegenvanger is zuinig met energie

Vleesetende planten moeten zuinig zijn op hun energie, anders kost het meer om insecten te vangen en te verteren dan dat het oplevert. De venusvliegenvanger heeft verschillende trucs om energieverspilling te beperken, ontdekten onder meer Andrej Pavlovič en collega’s.

Het irritante gebrom van een vlieg is ineens opgehouden. Ik kijk naar mijn venusvliegenvangertje en ja hoor… één van de vallen is dichtgeklapt. Sneu voor die vlieg, maar wat een bijzonder plantje! Want probeer maar eens een vlieg te vangen.
De venusvliegenvanger (of venusvliegenval, Dionaea muscipula) komt voor in Noord- en Zuid-Carolina (Verenigde Staten), waar hij groeit in zonnige, natte gebieden met voedselarme grond; hij kan zich daar handhaven door insecten te ‘eten’. De vangst van een vlieg levert het plantje veel voedingsstoffen op. Maar het proces vreet ook energie, en de balans tussen opbrengst en kosten moet positief zijn, anders groeit het plantje niet. Het heeft dan ook een aantal trucs ontwikkeld om zo weinig mogelijk energie te verspillen, schrijven Andrej Pavlovič en collega’s.

bladeren van venusvliegenvanger hebben een val aan het eindDe bladeren vormen een rozet, en elk blad heeft een tweelobbige val aan het uiteinde met een rij van tien à twintig tanden aan de rand van elke lob. Klieren langs de rand scheiden een suikerrijk goedje af om insecten te lokken. Op elke lob staan een paar voelharen die reageren als ze in contact komen met een insect, met als gevolg dat de val razendsnel dichtklapt. Verder zit de val vol met klieren; die scheiden enzymen af om een gevangen prooi te verteren en eiwitten om de vrijkomende voedingsstoffen op te nemen.
Het kost de plant veel energie om de vallen in bedrijf te houden en lokstoffen, verteringsenzymen en opname-eiwitten te maken. Hoe houdt hij dat verbruik binnen de perken?

1: Twee keer

Om te beginnen klapt een val pas dicht als de trilharen binnen twintig seconden tenminste twee keer zijn aangeraakt. Dan is de kans groot dat er een bewegend beestje is geland. Een val sluit zich dus niet zomaar als er een stofje komt aanwaaien en een voelhaar raakt.

2: Paniek

Maar niet ieder beestje is een lekkere vette vlieg. Een dichtgeklapte val houdt dan ook nog even kieren tussen de tanden, zodat kleine beestjes die de moeite van het verteren niet waard zijn kunnen ontsnappen. Als de val leeg is, gaat hij na een paar uur weer open. Maar zit er een groot insect gevangen, dan zal die in paniek raken en worstelen om vrij te komen. Zijn bewegingen zijn voor de val het signaal om zich hermetisch te sluiten; de tanden klemmen vast in elkaar, de lobben worden stevig aangedrukt. Als de voelharen tenminste vijf keer zijn beroerd, komt de afscheiding van verteringsenzymen en opname-eiwitten op gang, en hoe meer bewegingen de prooi maakt, hoe hoger de productie is.

3: Beperkte reactie

Toch kan een val ten onrechte dichtklappen, gesloten blijven en verteringsenzymen en opname-eiwitten gaan afscheiden, namelijk als hij beschadigd wordt. De oorzaak van die vergissing ligt in de evolutie van vleesetende planten; de gewoonte om insecten te vangen is waarschijnlijk ontstaan uit de reactie op insectenvraat.
Bij gewone planten wekt vraat een elektrisch signaal op dat op zijn beurt de productie van bepaalde plantenhormonen stimuleert, namelijk jasmonaten. Die zetten de planten ertoe aan om gifstoffen aan te maken die de insecten remmen, niet alleen op de aangevreten plek, maar uit voorzorg ook elders in de plant. Bij vleesetende planten, zoals de venusvliegenvanger, is dat iets veranderd. Bij deze planten wekt contact met een insect een elektrisch signaal op dat de productie van jasmonaten in gang zet; die hormonen zetten deze planten ertoe aan om verteringsstoffen en opname-eiwitten te produceren. Het elektrische signaal doet ook de val van de venusvliegenvanger dichtklappen.
Pavlovič deed een experiment waarbij hij herhaaldelijk met een naald in een val van venusvliegenvangers prikte om vraat na te bootsen, en hij laat zien dat die val daar net zo op reageert als op een insect dat de voelharen aanraakt: de val klapt dicht en er verschijnen jasmonaten. Als Pavlovič doorging met af en toe prikken, scheidde de val verteringsenzymen en opname-eiwitten af – allemaal voor niets. Maar de misplaatste reactie blijft beperkt tot de beschadigde val en treedt niet elders in de plant op, zoals bij de verdediging tegen vraat wel het geval is.

4: Proces gestopt

De afscheiding van verteringsenzymen en opname-eiwitten draait niet meteen op volle toeren. Pas als er bepaalde stoffen vrijkomen van een gevangen prooi wordt de productie tot de hoogste snelheid opgevoerd. Is er geen prooi, dan stopt het proces. Zo verspilt de plant weinig energie bij een vergissing.

Na ongeveer tien dagen is de vlieg verteerd en gaat de val weer open. Bij mijn plantje gebeurde dat overigens niet: de val met de vlieg erin is afgestorven. Misschien was die val te oud.

Willy van Strien

Foto’s
Groot: ©Andrej Pavlovič
Klein: Olivier License (via Flickr, Creative Commons CC BY-NC-ND 2.0)

Kijk hoe een vlieg gevangen wordt

Bronnen:
Pavlovič, A., J. Jakšová & O. Novák, 2017. Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). New Phytologist 216: 927-938. Doi: 10.1111/nph.14747
Böhm, J., S. Scherzer, E. Krol, I. Kreuzer, K. von Meyer, C. Lorey, T.D. Mueller, L. Shabala, I. Monte, R. Solano, K.A.S. Al-Rasheid, H. Rennenberg, S. Shabala, E. Neher & R. Hedrich, 2016. The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake. Current Biology 26: 286-295. Doi: 10.1016/j.cub.2015.11.057
Libiaková, M., K. Floková, O. Novák, L. Slováková & A. Pavlovič, 2014. Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap (Dionaea muscipula Ellis) is regulated by different stimuli from prey through jasmonates. PLoS ONE 9: e104424. Doi:10.1371/journal.pone.0104424
Pavlovič, A., V. Demko & J. Hudák, 2010. Trap closure and prey retention in Venus flytrap (Dionaea muscipula) temporarily reduces photosynthesis and stimulates respiration. Annals of Botany 105: 37-44. Doi:10.1093/aob/mcp269