Evolution and Biodiversity

Category: tree of life

Successful in the deep sea

Deep-sea anglerfishes flourished thanks to sexual parasitism

The pitch-dark, oxygen-lacking, cold, almost empty deep sea is a difficult environment to live in. But the common ancestor of deep-sea anglerfishes moved into this environment and the fish became highly successful from an evolutionary perspective: there are about 170 species. Chase Brownstein and colleagues describe how this animal group arised and flourished.

Deep-sea anglerfishes (Ceratioidea) may be the strangest animals around. Females are clumsy animals that can barely swim. They lure their prey with a ‘fishing rod’ growing from their heads with a luminous end. Males are much smaller than females and do not eat anything at all. They swim around looking for a mate. Upon finding a female, a male attaches onto her abdomen with his teeth and when she lays eggs, he fertilizes them. In some species, this biting results in a fusion, in which the male turns into a sperm-supplying appendage to his partner, deriving nutrition from her through a shared circulatory system: sexual parasitism.

It was this bizarre and unique method of reproduction that enabled colonization of the deep sea.

The deep-sea anglerfishes are part of the order of the anglerfishes (Lophiiformes). Their closest relatives live on seafloors, where they lie still or ‘walk’ on their pelvic fins. About 50 million years ago, the ancestor of the deep-sea anglerfishes split from such bottom dwellers and moved to the open deep sea. This happened at a time when the Earth was warmer normal, and many species in oceans went extinct. Perhaps the seafloor became less suitable as a place to live. In any case, the deep sea was a new environment where deep-sea anglerfishes underwent a period of rapid specialization and speciation.

A major problem in the deep sea is reproduction. Because there is little life, fish live in low densities. The chance of encountering a mate is small, and the chance that two conspecifics will meet each other when both are ready to reproduce is extremely small. Here, the unique method of reproduction in deep-sea anglerfishes was helpful. The researchers think that they practiced sexual parasitism from the beginning. As a result, a male only once had to find a female and it did not matter when he met her. Because he attached and did not let go, the two were assured of sex: he was ready to deliver his sperm as soon as she could lay eggs.

This is still the case in many species, but other species arose in which the male attaches to a female only temporarily.

Sexual parasitism, with dwarf males attached as sperm sacs, does not otherwise occur in vertebrates. How did it arise in deep-sea angler fishes? The researchers point to two developments that were taking place. First, there was a trend for male anglerfish to be smaller than females. Second, anglerfishes reduced their immune system, especially the acquired part, which builds up protection against specific pathogens or parasites that it has been exposed to. How these fishes do defend themselves against diseases is still unknown.

The deep-sea anglerfishes took both trends to the extreme: males are no larger than necessary to swim to a mate and produce sperm. And the acquired immune system has largely been dismantled, so that males can parasitize on females without any problems.

So, it was a fortunate combination of circumstances and characteristics that drove the deep-sea anglerfishes to the challenging deep sea and made them successful.

Willy van Strien

Photo: Female Humpback anglerfish (Melanocetus johnsonii), which belongs to deep-sea anglerfish. Fernando Losada Rodríguez (Wikimedia Commons, Creative Commons CC BY-SA 4.0)

More about tiny deep-sea anglerfish males that parasitize on females

Brownstein, C.D., K.L. Zapfe, S. Lott, R. Harrington, A. Ghezelayagh, A. Dornburg & T.J. Near, 2024. Synergistic innovations enabled the radiation of anglerfishes in the deep open ocean. Current Biology 34: 2541-2550. Doi: 10.1016/j.cub.2024.04.066

Evolution of butterflies

Europe has the fewest butterfly species

Mating butterflies, pea blue

The very first butterflies on earth flew in what now is North or Central America. The caterpillars fed on leaves of bean plants, according to research by Akito Kawahara and countless others.

Butterflies can be found everywhere on earth, except Antarctica. Until now, it was poorly known where and when they originated and how they evolved.

Together with a huge team, Akito Kawahara figured this out. The researchers analyzed the DNA of almost 2300 butterfly species to draw up an evolutionary tree. They also gathered a lot of knowledge by studying museum collections and digging through field guides in all languages. This allowed them to unravel how butterflies spread over the earth and how they lived.

The diversity of butterflies is great; nowadays, there are 19,000 species worldwide. They have descended from moth ancestors. On the evolutionary tree, their branch originates about one hundred million years ago, when dinosaurs were still around. Flowering plants were already present; adult butterflies could find nectar on the flowers which, in return, they pollinated.

Caterpillars need a lot of food to grow, and the caterpillars of the first butterflies probably gnawed on leaves of bean plants.

Late in Europe

The great supercontinent of Pangea had broken into two pieces when the first butterflies appeared. Both pieces, Gondwana (Africa, Australia, Antarctica, and South America) and Laurasia (North America, Europe, and Asia), were falling apart and the parts drifted away. Originally, India was part of Gondwana, but came loose and drifted to Laurasia.

According to the research, butterflies have originated in what is now western North America or Central America. They crossed the sea to South America fairly quickly.

About seventy-five million years ago, butterflies also moved from North America to Asia, via the Bering Strait, and then spread to India and Australia, and later Africa. Overland the road to Europe was open, but butterflies took a long time to chose this direction. The reason is unclear, and the research gives no answer. Butterflies arrived in Europe ‘only’ thirty million years ago, and as a consequence, Europe has few species compared to other continents.

Caterpillar diet

The caterpillars of most species feed on plants and are quite choosy. The so-called host plants of these species usually belong to one plant family.

Some species have developed an alternative caterpillar diet. The caterpillars consume organic detritus or lichens, and some blues (Lycaenidae) even are carnivorous and eat other insects.

Willy van Strien

Photo: Pea blues (Lampides boeticus) mating. Atanu Bose Photography (Wikimedia Commons, Creative Commons CC BY-SA 4.0)

Kawahara, A.Y. et al., 2023. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. Nature Ecology and Evolution, 15 May. Doi: 10.1038/s41559-023-02041-9

Resemblance is striking

Parasitic Vidua nestlings trick host parents with near-perfect mimicry

Vidua nestlings mimic the young of their host parents

In order not to stand out in the nest in which they grow up clandestinely, Vidua nestlings mimic the young of the host parents. They perform very well, Gabriel Jamie and colleagues report. But some slight discrepancies exist.

African whydahs and indigobirds, Vidua species, are brood parasites like the cuckoo. They lay their eggs in the nest of other bird species, in this case grassfinches, and have the host parents raise their young. Vidua finches are unable to provide parental care. But these brood parasites do much less harm to the host families than a cuckoo, because young Viduas don’t eject other nestlings from the nest. The host parents take care for their own offspring, but have some extra, foreign young.

The foreign nestlings should not stand out, otherwise the tricked parents will notice the deception. It was already known that Vidua young resemble their host parents’ young. With special computer software, Gabriel Jamie and colleagues now show how successful the mimicry is.

Ornamented mouths

pin-tailed whydah is brood parasiteThe Vidua genus contains nineteen species. In the breeding period, the males are real beauties, while the females are inconspicuous and difficult to recognize. Jamie took a closer look at three species: pin-tailed whydah (Vidua macroura), broad-tailed paradise whydah (Vidua obtusa) and purple indigobird (Vidua purpurascens). They are host-specific, each Vidua species has a single host species. Jamie compared the Vidua nestlings to that of their respective host parents and of a number of other grassfinch species.

Young grassfinches (Estrildidae) have ornamental mouth markings that become fully visible when they open their beaks; this ornamentation in unusual among birds. Each grassfinch species has its characteristic pattern, colour and structure.

Nestlings of the breeding parasites accurately mimic those characteristic markings, is the conclusion of the research. An analysis with pattern recognition software shows that the pattern is similar to that of their host parent species. The colours match well too. Vidua nestlings also cleverly imitate the begging calls and postures of their foster siblings.


Previous research, by Michael Sorenson, had shown that the nineteen species of whydahs and indigobirds are much younger than their hosts in an evolutionary sense. The idea is that their common ancestor switched to a brood parasitic lifestyle with a grassfinch as host parent.

Speciation could then occur quickly. Whenever a Vidua female happens to lay eggs in the nest of another host, a separate group associated to that new host arises, because Vidua nestlings imprint on the song of their host father. Each grassfinch species has its own characteristic song. When grown up, Vidua males will mimic the song of their host, and females are attracted to this song. Also, females select a nest of the host species they were raised by to lay their eggs in. The group turns into a new species.

The nestlings then become more and more similar to the nestlings of the new host through an evolutionary adaptation process. Because the more a Vidua nestling resembles the young of its host parents, the more likely they are to accept it and care for it, increasing its survival chance.


And as a matter of fact, the resemblance between foreign and own young in a parasitized grassfinch’s nest turned out to be striking. But it is not entirely perfect. Small but consistent differences exist. Perhaps the foreign nestlings are (yet) unable to fully mimic their nest mates. And apparently, they are doing well enough: the host parents accept them.

But there may be another explanation for the discrepancies, the researchers write. Nestlings of pin-tailed whydah, for example, have spots in the beak that are slightly larger than those of their foster parents’ young, common waxbill (Estrilda astrild), and their begging calls are slightly extended. Unlike a waxbill nestling, they wave a wing under their open mouth while begging.

So, these Vidua nestlings are slightly exaggerating their host’s begging signals. And perhaps the host parents favour them as a consequence. An intriguing thought.

Willy van Strien

Large: pin-tailed whydah nestling, the outside of the mouth markings visible. ©Gabriel A. Jamie
Small: pin-tailed whydah, breeding male. Alan Manson (Wikimedia Commons, Creative Commons CC BY-SA 2.0)

Jamie, G.A., S.M. Van Belleghem, B.G. Hogan, S. Hamama, C. Moya, J. Troscianko, M.C. Stoddard, R.M. Kilner & C.N. Spottiswoode, 2020. Multimodal mimicry of hosts in a radiation of parasitic finches. Evolution, online July 21. Doi: 10.1111/evo.14057
Sorenson, M.D., K.M. Sefc & R.B. Payne, 2003. Speciation by host switch in brood parasitic indigobirds. Nature 424: 928-931. Doi: 10.1038/nature01863

Biting prey

Fish with venomous fangs have many imitators

Fangblenny Petroscirtes breviceps mimics a venomous species

Meiacanthus fish species are armed with venomous fangs that deter predators. Many nonvenomous fish species protect themselves from being attacked by mimicking the aposematic colours and the behaviour of Meiacanthus species. A large research team unravelled the evolution of the venomous fish.

A predator fish expecting to easily ingest a small Meiacanthus fish will prove to be wrong. This prey is armed with sharp teeth that inject venom into its enemy. Disoriented, the predator will release its victim – and will not go after the same fish anymore.

Meiacanthus species are the only fish with venomous fangs. They belong to the group of the saber-toothed blennies or fangblennies (Nemophini), which all have a pair of enlarged, hollow canines in the lower jaw. Nicholas Casewell, together with a large research team, has shown that these fangs must have originated in the common ancestor of these blennies. But only species of the genus Meiacanthus developed venomous fangs. They possess venom glands at the base of the fangs and grooves on the fangs to deliver the venom into the wound.

According to the researchers, the venom does not cause pain upon injection, but it reduces the blood pressure in the predator, which becomes weakened and disoriented so that the prey can escape unharmed from its mouth. Blood pressure reduction appears to be such a bad experience that the predator fish will never try to ingest a Meiacanthus again. The venom was found to contain three compounds that had never been found in fish before.


Some non-venomous fangblennies, as well as many fish species from other groups, profit from the aversion that predators have to Meiacanthus species by looking the same and behaving the same. While not mounting a defence against predators themselves, they are still protected from attacks thanks to this mimicry.

What do non-venomous fangblennies use their fangs for? To eat, probably. This holds at least for all Plagiotremus species, which feed on dermal tissue, scales, mucus, and fins of larger fish. If they look like Meiacanthus species, they can easily approach their victims, which are reluctant to attack.

Willy van Strien

Petroscirtes breviceps, with nonvenomous fangs in the lower jaw. ©Alex Ribeiro
CT-scan of the venomous species Meiacanthus grammistes. ©Anthony Romilio (University of Queensland, Australia)

Casewell, N.R., J.C. Visser, K. Baumann, J. Dobson, H. Han, S. Kuruppu, M. Morgan, A. Romilio, V. Weisbecker, S.A. Ali, J. Debono, I. Koludarov, I.Que, G.C. Bird, G.M. Cooke, A. Nouwens, W.C. Hodgson, S.C. Wagstaff, K.L. Cheney, I. Vetter, L. van der Weerd, M.K. Richardson & B.G. Fry, 2017. The evolution of fangs, venom, and mimicry systems in blenny fishes. Current Biology, March 30 online. Doi: 10.1016/j.cub.2017.02.067