Het was zo eenvoudig begonnen

Evolutie en Biodiversiteit

Pagina 3 van 43

Alleen als het fris is

Kleine leverbot verandert mier in zombie, maar niet overdag

op last van de kleine leverbot klimt de kale bosmier de vegetatie in

Larven van de kleine leverbot, een parasiet, moeten overstappen van mier naar hert. Ze sturen het gedrag van geïnfecteerde mieren om de kans op die overstap te maximaliseren, melden Simone Nordstrand Gasque en Brian Fredensborg.

Een mier die is geparasiteerd door larven van de kleine leverbot is zichzelf niet. Op gezag van de parasiet klimt hij omhoog in het gras en blijft daar onbeweeglijk zitten. Zo komt de parasiet makkelijker terecht in de gastheer waarin hij volwassen wordt, een grazer. De manipulatie is complex, laten Simone Nordstrand Gasque en Brian Fredensborg zien: alleen als het fris is zit een geïnfecteerde mier boven; als het warm is, komt hij terug en gedraagt hij zich normaal.

De kleine leverbot (Dicrocoelium dendriticum, een platworm) heeft een ingewikkelde levenscyclus met drie larvenstadia in drie verschillende gastheren; buiten een gastheer kan hij niet leven. Hij ontwikkelt zich achtereenvolgens in een landslak, een mier en een grazend zoogdier, zoals hert, schaap of koe. Hij moet dus een aantal keer overstappen.

Galwegen

Kleine leverbot leeft in lever van grazers als hij volwassen is

Volwassen leverbotten leven in galwegen in de lever van grazers. Ze paren en maken eitjes aan die met de ontlasting naar buiten komen. De eitjes worden opgepikt door een landslak die van de uitwerpselen eet. Uit de eitjes komen in het slakkenlijf de zogenoemde miracidium-larven. Zij vermenigvuldigen zich aseksueel en er verschijnen duizenden larven van een volgend stadium, de cercaria-larven. Zij kruipen naar de long van de slak, waar ze worden verpakt in slijmballen.

De slak hoest de slijmballen op, en dan is de volgende gastheer aan de beurt. Ook die komt uit zichzelf: de slijmballen zijn smakelijke hapjes voor mieren, die ze meenemen naar hun nest. Volwassen mieren en larven eten ervan en raken besmet. In mieren ontwikkelen de cercaria-larven zich tot een volgend stadium, de metacercaria-larven.

Opoffering

En dan staat de lastigste overstap op het programma, die nodig is om de cyclus te voltooien: van mier terug naar grazer. Dat gaat niet zomaar. Mieren zitten in hun nest of lopen rond, vooral over de bodem. Daar neemt een grazer geen hap van. Hier zou de cyclus spaak kunnen lopen, maar nu grijpt de parasiet in.

De larven – het kunnen er honderden zijn – kapselen zich veilig in in het achterlijf van de mier. Maar één van hen verhuist naar een zenuwknoop in de kop van de mier. Hoe hij het precies doet is onduidelijk, maar deze larve krijgt controle over het gedrag van de mier. Die klimt als een zombie zonder reden omhoog in een grasspriet en bijt zich vast; de kaken gaan op slot. En zo kan een grazend dier de mier met de larven aan boord samen met het gras binnenkrijgen.

De larve die de overstap mogelijk maakte, sterft in de maag van de grazer. Hij heeft zich opgeofferd voor de andere. Die komen op een veilige plek uit hun kapsel, ontwikkelen zich tot volwassen wormen en nestelen zich in de galwegen van de grazer: de cirkel is rond.

Het is al bijzonder dat een parasiet het gedrag van zijn gastheer zo ingrijpend verandert. Maar de kleine leverbot gaat nog verder dan dat: hij zorgt ervoor dat de verandering alleen tot uiting komt als dat zin heeft.

Uitgekiend

Gasque en Fredensborg deden onderzoek naar het gedrag van de kale bosmier (Formica polyctena) na infectie met de kleine leverbot in bossen in Denemarken, waar reeën leven. Ze laten zien dat een besmette mier zich alleen boven in de vegetatie vastbijt en blijft zitten als het fris is, dus ’s morgens vroeg en ’s avonds. Overdag laat hij los, gaat naar beneden en doet weer net als de andere mieren.

Het is de temperatuur die bepaalt of een geïnfecteerde mier zichzelf is of een zombie wordt, zo blijkt. Het tijdstip van de dag, de luchtvochtigheid en de hoeveelheid zonlicht doen er niet toe. Hoe warmer het is, hoe minder besmette mieren hoog in de vegetatie zitten. Alleen aan het eind van het seizoen, als het overdag fris blijft, blijven veel geïnfecteerde mieren de hele dag zitten.

Vanuit het oogpunt van de parasiet is dat gunstig. Want op warme dagen zou een vastgeklemde mier oververhit kunnen raken en doodgaan, en dan overleven ook de parasitaire larven niet. Aangezien herten vooral in de schemering grazen, heeft het geen zin om dat risico te nemen. Het is beter om de mier dan zijn mierengang te laten gaan, en hem pas ’s avonds weer omhoog te sturen.

Willy van Strien

Foto’s:
Groot: geïnfecteerde kale bosmier, Formica polyctena. ©Simone Nordstrand Gasque
Klein: kleine leverbot (Dicrocoelium dendriticum), volwassen vorm. D. Drew (Wikimedia Commons, Public Domain)

Bron:
Gasque, S.N. & B.L. Fredensborg, 2023. Expression of trematode-induced zombie-ant behavior is strongly associated with temperature. Behavioral Ecology, 24 augustus online. Doi: 10.1093/beheco/arad064

Samenwerking in plaats van bedrog

Stinkende Gastrodia-orchidee biedt voedsel voor vliegenlarven

Gastrodia foetida levert zijn bestuivers een wederdienst

Gastrodia foetida lokt voor de bestuiving vliegenvrouwtjes die normaliter op paddenstoelen afkomen om daar hun eitjes te leggen. De orchidee lijkt een bedrieger, maar is dat toch niet, ontdekte Kenji Suetsugu.

Veel orchideeën zijn bedriegers. Waar de meeste planten samenwerken met insecten en hen nectar aanbieden als beloning voor de bestuiving, laten zulke orchideeën de bloemen bestuiven zonder daar een beloning tegenover te stellen. Ze lokken hun bestuivers met valse voorwendsels. Zo doen sommige orchideeën zich voor als vrouwtjesinsecten om mannetjes te misbruiken die willen paren en bij hun vergeefse pogingen stuifmeel van de ene bloem oppikken en op een volgende achterlaten.

Een ander soort bedrog plegen orchideeën van het geslacht Gastrodia. Zij lokken vliegenvrouwtjes die eitjes willen leggen door de geur na te bootsen van materiaal waarin vliegenlarven opgroeien, zoals gistende vruchten of halfvergane paddenstoelen. Maar de belofte is vals, blijkt als de vrouwtjes op deze bloemen afkomen. Als ze er eitjes op leggen, wat ze zelden doen, gaan de larven die eruit komen dood van honger.

Een uitzondering is Gastrodia foetida, ontdekte Kenji Suetsugu.

In de val

Gastrodia foetida is een zeldzame plant uit de bossen van Japan en Taiwan. Net als bij andere Gastrodia-soorten hebben de planten geen gewone bladeren en de sappige bloem stelt in onze ogen niet veel voor: hij is onopvallend en bruin. Maar voor vrouwtjes van sommige vliegensoorten is de bloem zeer aantrekkelijk vanwege zijn muffe geur; foetida betekent stinkend. Een veel geziene bezoeker is Drosophila bizonata, een soort waarvan de larven zich in rottende paddenstoelen ontwikkelen.

Drosophila bizonata vrouwtje met stuifmeel

Als een vliegenvrouwtje de bloem ingaat, buigt de holle lip in de bloem omhoog naar het zuiltje dat de stamper en meeldraden draagt. Het vrouwtje zit vast in de buis die daardoor tussen zuiltje en lip ontstaat. Om uit die val te ontsnappen moet ze door een nauwe opening langs de meeldraden kruipen, en dan plakt het stuifmeel, dat in twee klompjes is samengepakt, op haar rug (tenzij er al een andere vlieg geweest was, want dan zijn de klompjes weg). Als ze daarna een andere bloem bezoekt en weer opgesloten raakt, komen die stuifmeelklompjes op de stamper terecht en zal die bloem veel zaadjes maken. Dat gaat bij de andere Gastrodia-soorten net zo.

Bloemen vergaan

Maar in tegenstelling tot die andere soorten, is de stinkende orchidee wel degelijk een geschikte plek om eitjes te leggen. Suetsugu vond vaak eitjes op bloemen van Gastrodia foetida waar een vliegenvrouwtje was geweest. En het bijzondere was, dat die eitjes uitkomen en dat de larven niet doodgaan, maar goed groeien. Drie of vier dagen na bestuiving vallen de bloemen af en blijft alleen het vruchtbeginsel op de plant achter. Terwijl de bloemen op de bodem vergaan, eten de larven ervan tot ze volgroeid zijn en verpoppen. Twee weken na bestuiving komen ze als volwassen vliegen tevoorschijn.

Hoewel de larven van Drosophila bizonata paddenstoel-eters zijn, voorzien deze bloemen kennelijk in hun behoefte.

Wederzijdse dienstverlening

Waarom de paddenstoel-etende vliegenlarven het ook op deze bloemen goed doen, is niet duidelijk. Het kan te maken met het feit dat de orchidee zijn suikers niet zelf kan maken door middel van fotosynthese, zoals normale planten, want hij heeft niet de groene bladeren die daarvoor nodig zijn. In plaats daarvan steelt hij suikers van schimmels. Misschien, suggereert Suetsugu, heeft het plantenweefsel daardoor chemische overeenkomsten met dat van paddenstoelen.

Hoe het ook zij, Gastrodia foetida lijkt van bedrog weer te zijn teruggegaan naar samenwerking met bestuivers, maar met een andere beloning dan nectar. Vliegjes bestuiven de bloemen en het sappige bloemweefsel in ontbinding doet daarna dienst als voedsel voor hun larven. Het is de eerste keer dat deze vorm van beloning is aangetoond.

De samenwerking is voor de plant onmisbaar, maar voor de vlieg niet; die kan zijn eitjes ook gewoon op paddenstoelen leggen.

Willy van Strien

Foto’s: ©Kenji Suetsugu
Eerste: Gastrodia foetida
Tweede: Drosophila bizonata zit met stuifmeel op de rug in de bloem; de val (boven het zuiltje, onder de bloemlip) staat open

Zie ook:
Vogelorchideeën doen zich voor als vrouwtjeswesp
Gastrodia pubilabiata ruikt als een opgroeiplaats voor vliegenlarven, maar is het niet

Bron:
Suetsugu, K., 2023. A novel nursery pollination system between a mycoheterotrophic orchid and mushroom-feeding flies. Ecology, 23 augustus online. Doi: 10.1002/ecy.4152

Klever

Jagende trompetvis schaduwt andere vis om ongezien te blijven

Trompetvis kan prooien dichter benaderen door andere vis te schaduwen

Door heel dicht op een andere vis te zwemmen kan de trompetvis zijn prooien dichter benaderen zonder dat die dat door hebben. Het werkt, zagen Samuel Matchette en collega’s.

Om zijn prooien met een aanval te ‘verrassen’ houdt een trompetvis zich onzichtbaar. De lange, uiterst dunne vis, doorgaans ruim een halve meter lang, wacht vaak in verticale houding tussen koralen en sponzen tot prooidieren zo dicht in de buurt komen dat hij kan toeslaan; zijn prooien zijn kleinere vissen en garnalen. Doordat de trompetvis al wachtend de kleur van de achtergrond aanneemt, valt hij niet op.

Maar die strategie is onbruikbaar in water waar weinig dekking is. Daar past hij een andere camouflage-truc toe: hij schaduwt een ongevaarlijke vis door heel dicht op hem mee te zwemmen. En dat werkt goed, laten Samuel Matchette en collega’s zien: prooidieren zien de vijand niet aankomen.

Duidelijke reactie

De trompetvis, Aulostomus maculatus, is familie van zeepaarden en zeenaalden; hij leeft in het westelijke deel van de Atlantische Oceaan. Het was al bekend dat hij vaak aan andere vissen kleeft als hij zwemt. Hij hangt dan bijvoorbeeld gebogen boven de rug van een grote vis en heeft de kleur van die vis. Het idee bestond al dat zo zijn kenmerkende profiel verdwijnt en hij zijn prooien ongemerkt kan benaderen. Vissen waar hij aan kleeft zijn meestal ongevaarlijke planteneters, zoals papegaaivissen, waar prooidieren niet voor vluchten. 

Maar de vraag was nog wel: werkt het echt? Stelt het de trompetvis in staat om zijn prooien ongezien dichter te benaderen?

De onderzoekers deden rond de koraalriffen bij Curaçao proeven die deze vragen bevestigend beantwoorden.

Ze bestudeerden het verdedigingsgedrag van tweekleurige koraaljuffers (Stegastes partitus). Deze vissen leven in kolonies, staan op het menu van de trompetvis en reageren duidelijk als ze een roofvis zien: enkele visjes inspecteren de roofvis en dan zoeken ze allemaal snel een schuilplaats op.

Modellen

Matchette en collega’s confronteerden kolonies van de koraaljuffers met een driedimensionaal geprint en geverfd model van een trompetvis alleen, een papegaaivis alleen of een papegaaivis met een trompetvis eraan vastgeplakt. Ze trokken die modellen boven een kolonie langs, een per keer, en filmden de reactie.

De koraaljuffers schrokken, zoals te verwachten is, niet erg van een papegaaivis die alleen langs gleed. Ze reageerden daarentegen sterk op een trompetvis alleen; ze inspecteerden die uitvoerig en trokken zich snel terug.

En de combinatie van papegaaivis en trompetvis? Die riep geen sterkere reactie op dan een papegaaivis alleen. Conclusie: tweekleurige koraaljuffers hebben een trompetvis niet in de gaten als hij een papegaaivis schaduwt. De camouflage-truc – zich verschuilen door aan een bewegende vis te kleven – werkt goed.

Dat wil zeggen: zo lang de papegaaivis de klever tolereert. Vaak jaagt hij hem weg.

Willy van Strien

Foto: Trompetvis. Becky A. Dayhuff (Public Domain)

Schaduwgedrag op YouTube

Bronnen:
Matchette, S.R., C. Drerup, I.K. Davidson, S.D. Simpson, A.N. Radford & J.E. Herbert-Read, 2023. Predatory trumpetfish conceal themselves from their prey by swimming alongside other fish. Current Biology 33: R781-R802. Doi: 10.1016/j.cub.2023.05.075
Aronson, R., 1983. Foraging behavior of the west Atlantic trumpetfish, Aulostomus maculatus: use of large, herbivorous reef fishes as camouflage. Bulletin of Marine Science 33: 166-171.

Handtekening op ei

Afrikaanse koekoek maakt weinig kans bij treurdrongo

Afrikaanse koekoek heeft geen succes bij treurdrongo

Vrouwen van de Afrikaanse koekoek leggen hun eieren in nesten van de treurdrongo. Ze bootsen de eieren van drongo’s prima na – en toch ontmaskeren drongo’s meer dan 90 procent van de koekoekseieren, laten Jess Lund en collega’s zien.

Ten zuiden van de Sahara leeft de Afrikaanse koekoek, Cuculus gularis, die, net als de gewone Europese koekoek, eieren legt in nesten van andere vogelsoorten (een ei per nest) met de bedoeling dat pleegouders hun jongen grootbrengen. De broedparasiet richt zich op maar enkele vogelsoorten, waarvan de treurdrongo, Dicrurus adsimilis, een van de belangrijkste is.

Maar bij deze belangrijke gastheersoort heeft de koekoek nauwelijks succes, berekenen Jess Lund en collega’s. De beoogde pleegmoeder doorziet het bedrog meestal doordat ze op haar eigen eieren een ‘handtekening’ heeft gezet ter verificatie.

Het is het gevolg van de lange evolutionaire geschiedenis die Afrikaanse koekoek en treurdrongo delen. Tussen beide vogelsoorten bestaat een groot conflict, want de broedparasiet kan niet zonder de diensten van de pleegouder, en voor de pleegouder is de belasting enorm.

Wapenwedloop

Het begint er al mee dat de Afrikaanse koekoek een drongo-ei vernietigt als ze een ei komt leggen in het nest van een treurdrongo-paar. Het koekoeksjong maakt de klus af. Het komt als eerste uit en wipt de drongo-eieren uit het nest; mocht er daar al een van zijn uitgekomen, dan wordt dat jong er ook uit gekieperd. De pleegouders verliezen dus hun hele legsel. Vervolgens zijn ze weken zoet met de veeleisende zorg voor het pleegjong.

Dit conflict met grote belangen deed een wapenwedloop ontstaan. De drongo leerde om de eieren van de koekoek te herkennen en uit hun nest te gooien. Als reactie daarop ontwikkelde de koekoek eieren die steeds beter op drongo-eieren gingen lijken. Momenteel is de mimicry vrijwel perfect: in de ogen van drongo’s zien koekoekseieren er precies zo uit als drongo-eieren.

Individuele handtekening

De eieren van de treurdrongo zijn zeer variabel. De achtergrondkleur varieert van wit tot roodbruin, en de eieren kunnen effen, gestippeld of gevlekt zijn. Dezelfde variatie hebben eieren van de Afrikaanse koekoek. Op populatieniveau is de nabootsing uitstekend en het lijkt alsof de Afrikaanse koekoek voor ligt in de wapenwedloop.

Maar in werkelijkheid staat de treurdrongo er veel beter voor.

Dat komt doordat een drongo-vrouw eieren produceert die er allemaal precies hetzelfde uitzien. Elke vrouw heeft haar eigen karakteristieke kleur en patroon. Zo zet ze als het ware een onderscheidende handtekening op elk ei ter verificatie: deze heb ik gelegd. Een koekoeksvrouw legt weliswaar een ei met een uiterlijk dat valt binnen de drongo-variatie, maar ze legt haar eieren in willekeurige drongo-nesten. De kans dat ze een ei legt bij een drongo-vrouw die precies hetzelfde ei maakt, is klein. Het koekoeksei wijkt meestal af.

Beschermd

Met experimenten en modellen voorspellen de onderzoekers hoe groot de kans is dat een treurdrongo een ei van de Afrikaanse koekoek in het nest herkent en verwerpt. En dat is meer dan 90 procent! Zonder individuele handtekeningen zou die kans veel kleiner zijn. Dus de strategie van drongo’s – grote variatie tussen legsels, grote eenvormigheid binnen legsels – is een uitstekend antwoord op de vrijwel perfecte nabootsing door koekoeken. De treurdrongo heeft zich effectief beschermd tegen de broedparasiet.

En zo is de Afrikaanse koekoek weinig succesvol bij deze gastheer. Slechts een enkele keer wordt een koekoeksei geaccepteerd. Als je ook nog bedenkt dat ongeveer een op de vijf drongo-nesten tijdens de broedtijd verloren gaat, komt het voortplantingssucces van de broedparasiet uiterst laag uit. Maar dat lage succes is kennelijk genoeg om zich als soort te kunnen handhaven.

De treurdrongo is zelf ook een parasiet, maar van een ander type: hij steelt prooien die andere vogels bemachtigd hebben.

Willy van Strien

Foto: Afrikaanse koekoek. Alastair Rae (Wikimedia Commons, Creative Commons CC BY-SA 2.0)

Zie ook: gelegenheidsdieven

Bronnen:
Lund, J., T. Dixit, M.C. Attwood, S. Hamama, C. Moya, M. Stevens, G.A. Jamie & C.N. Spottiswoode, 2023. When perfection isn’t enough: host egg signatures are an effective defence against high-fidelity African cuckoo mimicry. Proceedings of the Royal Society B, 26 juli online. Doi: 10.1098/rspb.2023.1125
Stoddard, M.C., R.M. Kilner & C. Town, 2014. Pattern recognition algorithm reveals how birds evolve individual egg pattern signatures. Nature Communications 5: 4117. Doi: 10.1038/ncomms5117

Gif met een verhaal

Rups van flanelmot verdedigt zich met bacterieel eiwit

Rups van flanelmot Megalopyge opercularis kan gemeen steken.

Flanelmot-rupsen beschikken over een voor motten uniek gif dat helse pijn veroorzaakt en roofvijanden afschrikt. Andrew Walker en collega’s ontsloten de verrassende herkomst van dit gif.

Flanelmotten hebben rupsen met een aaibaar uiterlijk: ze hebben een ‘vacht’ van lange, vaak golvende haren. Maar aaien is geen goed idee, want onder de haren schuilen stekels die bij aanraken een gif inspuiten. Een helse pijn die uren- of dagenlang kan aanhouden is het gevolg. Flanelmotten vormen de familie Megalopygidae. De familie telt zo’n 250 soorten die leven in Noord-, Midden- en Zuid-Amerika.

In het gifmengsel van de rupsen zijn bepaalde eiwitten de boosdoeners. Die eiwitten hebben een bijzondere evolutionaire geschiedenis, ontdekten Andrew Walker en collega’s.

Gaatjes

De onderzoekers waren nieuwsgierig naar de samenstelling en werkwijze van het gif van flanelmot-rupsen. Ze namen twee soorten onder de loep: de zuidelijke flanelmot Megalopyge opercularis en de zwartgegolfde flanelmot Megalopyge crispata. Het verraste hen dat de giftige eiwitten, die ze megalysinen noemen, sterk bleken te lijken op giftige eiwitten van ziekteverwekkende bacteriën, zoals Clostridium. De bacteriële eiwitten zijn schadelijk doordat ze cellen van slachtoffers lek prikken. En precies dat, zo bleek uit experimenten, doen de giftige eiwitten van flanelmot-rupsen ook: ze maken gaatjes in de zenuwcellen van dieren. De zenuwcellen vuren vervolgens signalen af die de pijnsensatie veroorzaken.

Er bestaan meer soorten vlinders en motten met giftige rupsen, maar zij hebben heel andere soorten gif. Het gif van de Megalopygide-familie is uniek onder vlinders en motten. Is het niet gek dat rupsen van deze familie hetzelfde type giftige eiwitten maken als bacteriën? Is dat toevallig?

Verdediging

Nee, het is geen toeval. Een voorouder van vlinders en motten heeft genen die voor gaatjes-makende eiwitten coderen ooit op de een of andere manier overgenomen van bacteriën, en daarna hebben vlinders en motten die genen behouden (overdracht van genen tussen soorten komt voor, maar is zeldzaam). Kennelijk zijn de eiwitten nuttig voor hen, maar welke functie ze hebben is nog niet bekend. Ze dienen in elk geval niet als gif.

Behalve dan bij leden van de Megalopygide-familie. Die zetten deze eiwitten wel weer in als gif waarmee rupsen zich tegen hun roofvijanden verdedigen.

Vogel aapt de flanelmot-rupsen na

En dat werkt uitstekend. Als een dier eenmaal geprobeerd heeft om een flanelmot-rups te pakken en gestoken is, zit de schrik er goed in en zal hij zulke diertjes voortaan met rust laten. Jongen van de grauwe treurtiran (Laniocera hypopyrra, een Zuid-Amerikaanse zangvogel) doen er hun voordeel mee. Ze bootsen overtuigend het uiterlijk en gedrag van een flanelmot-rups na, en zonder zelf giftig te zijn schrikken ze zo toch roofvijanden af.

Flanelmotten zijn niet de enigen die dit soort gaatjes-makende, van bacteriën afkomstige eiwitten als gif toepassen. Sommige duizendpoten, kwallen en vissen doen dat ook.

Willy van Strien

Foto: Rups van zuidelijke flanelmot Megalopyge opercularis. Judy Gallagher (Wikimedia Commons, Creative Commons CC BY 2.0)

De onderzoekers geven uitleg op YouTube

Zie ook: het jong van de grauwe treurtiran imiteert de rups van een flanelmot

Bron:
Walker, A.A., S.D. Robinson, D.J. Merritt, F.C. Cardoso, M.H. Goudarzi, R.S. Mercedes, D.A. Eagles, P. Cooper, C.N. Zdenek, B.G. Fry, D.W. Hall, I. Vetter & G.F. King, 2023. Horizontal gene transfer underlies the painful stings of asp caterpillars (Lepidoptera: Megalopygidae). PNAS 120: e230587110. Doi: 10.1073/pnas.2305871120

Rode spintmijt-man heeft haast

Hij stroopt haar oude huid af om als eerste te paren

Vrouwtje rode spintmijt wordt vaak uitgekleed door een mannetje als ze vervelt.

Als een vrouwtje rode spintmijt op het punt staat om te vervellen tot volwassen vrouw, staat vaak al een mannetje klaar om haar uit te kleden en te paren, schrijven Peter Schausbergen en collega’s.

Mannetjes van de rode spintmijt, Tetranychus urticae, moeten hard hun best doen om nageslacht te krijgen. Want alleen degene die als eerste met een vrouwtje paart kan haar eitjes bevruchten. Het is dus zaak om present te zijn zodra een vrouwtje volwassen wordt. Vaak zit er voor die tijd al een mannetje klaar, blijkt uit waarnemingen van Peter Schausbergen en collega’s.

Mijten zijn spinachtigen. Ze beginnen hun leven als eitje, worden larve en maken dan twee nimfstadia door. Ze vervellen tussen de stadia en komen een slag groter uit het oude vel te voorschijn; na de laatste vervelling zijn ze geslachtsrijp. Vrouwtjes ontstaan uit bevruchte eitjes, mannetjes uit onbevruchte eitjes.

Zilverachtige kleur

Een vrouwtje rode spintmijt krijgt in het laatste nimfstadium vaak gezelschap van een mannetje dat haar claimt door boven op haar te gaan zitten. Hij steekt er tijd en energie in om haar te bewaken. Dat zou allemaal voor niets zijn als er na de laatste vervelling een rivaal verschijnt die hem te snel af is en als eerste paart. Dat gevaar is reëel, want een pas uitgekomen volwassen vrouwtje scheidt lokstoffen af die mannetjes aantrekken. Dus daar moet hij een stokje voor steken.

Om de kostbare wachttijd te verkorten en zijn paring als eerste veilig te stellen, komt een wakend mannetje in actie als haar laatste vervelling zich aankondigt. Een dag voor de vervelling gaat de nimf een rustfase in, en in de laatste paar uur krijgt ze een zilverachtige kleur doordat er lucht komt tussen de oude huid, die ze zal afstoten, en de nieuwe huid.

Zij zet de vervelling in gang door op te zwellen, zodat de oude huid overdwars scheurt. Is ze alleen, dan trekt ze eerst het voorste deel van de oude huid uit en daarna het achterste deel, waarbij haar geslachtsopening vrijkomt. Maar zit er een mannetje op wacht, dan loopt het anders. Hij trommelt met zijn voorpoten op haar rug, en als reactie zwelt zij eerder op. Als de oude huid gescheurd is, stroopt hij gauw de achterkant af met zijn pedipalpen (de ‘bokshandschoentjes’ die spinnen ook hebben). En dan kan hij, met een beetje geluk, inderdaad als eerste paren.

Vechters en stiekemerds

Dit uitkleed-gedrag van de rode spintmijt-man is in onze ogen zeer opdringerig. Maar hij moet wel. Terughoudend gedrag wordt door natuurlijke selectie afgestraft: als hij netjes wacht tot ze zich blootgeeft is de kans groot dat een ander mannetje de vader van het nageslacht wordt.

Er zijn twee typen wachters: je hebt vechters, die veelvuldig door andere mannetjes worden gestoord als ze op een vrouwtje zitten en dan afstappen om de strijd aan te gaan. En je hebt stiekemerds (sneakers), die niet door rivalen worden benaderd en altijd onverstoorbaar blijven zitten. Misschien zien andere mannetjes hen aan voor vrouwtjes aangezien ze niet reageren, of misschien ruiken ze als vrouwtjes. Het zou interessant zijn om te achterhalen of vechters en stiekemerds even voortvarend te werk gaan als de nimf die ze bewaken aan vervelling toe is.

Plaag

De rode spintmijt is nog geen halve millimeter groot. Hij voedt zich door plantencellen aan te prikken en leeg te zuigen. Hij is ook bekend onder de naam kasspint en hij is wereldwijd een plaag op allerlei landbouwgewassen. Een enkele mijt richt weinig schade aan, maar de beestjes vermenigvuldigen zich snel en zijn al gauw met velen.

Willy van Strien

Foto: Vrouwtje van de rode spintmijt, Tetranychus urticae. Gilles San Martin (Wikimedia Commons, Creative Commons CC BY-SA 2.0)

Bronnen:
Schausberger, P., T.H.H. Nguyen & M. Altintas, 2023. Spider mite males undress females to secure the first mating. IScience, 107112, 7 juli. Doi: 10.1016/j.isci.2023.107112
Sato, Y., M.W. Sabelis, M. Egas & F. Faraji, 2013. Alternative phenotypes of male mating behaviour in the two-spotted spider mite. Experimental and Applied Acarology 61: 31-41. Doi: 10.1007/s10493-013-9673-y

Knappe camouflage-kunstenaar

Zeekat moet even zoeken naar het beste patroon

De gewone zeekat heeft een meesterlijk camouflage-vermogen

De zeekat heeft een uitstekend camouflage-vermogen en verandert razendsnel van uiterlijk als de achtergrond wisselt. Toch gaat dat niet rechtstreeks, laten Theodosia Woo en collega’s zien: de zeekat stelt een nieuw huidpatroon een paar keer bij voordat het goed is.

Om zich tegen roofvijanden te verdedigen, kan de gewone zeekat, Sepia officinalis, net als veel andere inktvissen aan camouflage doen, zodat hij opgaat in de omgeving. En als een roofvijand hem toch ziet, spuit hij inkt om diens zicht te belemmeren.

De zeekat leeft in de Noordzee, de Oostzee en de Middellandse Zee. Afhankelijk van de ondergrond, met bijvoorbeeld zand, rotsen of zeegras, kan hij een effen kleur aannemen, een gevlekt patroon hebben of grote donkere en lichte vlakken vertonen die zijn contouren opbreken. Er zijn talloze variaties en de zeekat tovert tegen vrijwel elke achtergrond een passende camouflage tevoorschijn, schrijven Theodosia Woo en collega’s.

Pigmentzakjes

Dat is onder meer mogelijk dankzij een paar miljoen pigmentcellen in de huid, de zogenoemde chromatoforen. Ze zijn er in drie kleuren: geel, rood en bruin. Het zijn gesloten zakjes met een elastische wand waar radiale spieren (als spaken) omheen liggen. Als de spieren zich op commando van de hersenen aanspannen, trekken ze zo’n zakje open en wordt de kleur zichtbaar.

Woo maakte duidelijk hoe een zeekat van uiterlijk verandert door experimenten te doen waarin ze dieren een andere ondergrond gaf; ze filmde de huid met hoge resolutie en mat de huidpatronen door met stevige computersoftware. Het resultaat is opmerkelijk. Want door de razendsnelle verandering lijkt het wel alsof zeekatten in één keer een nieuw passend huidpatroon te pakken hebben. Maar zo is het toch niet.

Bij een nieuwe ondergrond begint een zeekat meteen zijn huidpatroon aan te passen. Maar na een eerste verandering wacht hij even en stelt dan het gemaakte patroon bij zodat het beter wordt. Daarna wacht hij opnieuw en past het verder aan, net zo lang tot een goed patroon gevonden is. Hij doorloopt dus in een oogwenk een zoektraject en krijgt kennelijk voortdurend feedback. Zo’n zoektraject ligt niet vast, want als de onderzoekers meerdere keren dezelfde verandering van ondergrond gaven, legden de dieren verschillende zoektrajecten af en was het uiteindelijke resultaat ook anders. Al was het verschil in eindpatronen zo subtiel dat wij het niet waarnemen.

Weerkaatsen

Naast de pigmentcellen die hier zijn onderzocht, heeft de huid van de zeekat nog twee typen aanstuurbare cellen die verandering van uiterlijk mogelijk maken. Er zijn cellen die dankzij hun nanostructuur licht van één bepaalde kleur weerkaatsen, bijvoorbeeld blauw: de iridoforen. En er zijn cellen die al het opvallende licht weerspiegelen en in daglicht dus wit zijn: de leucoforen. Daarbij kan de huid ook nog eens glad of ruw zijn. De complexiteit van een inktvishuid gaat ons voorstellingsvermogen te boven.

Al die mogelijkheden worden niet alleen gebruikt voor camouflage, maar ook voor communicatie. De gewone zeekat komt in voorjaar en zomer naar de kust om te paaien, en het kleurenspel dat de dieren bij de balts vertonen is voor duikers een bezienswaardigheid.

Kleurenblind

Het grootste raadsel van inktvissen is misschien wel hoe ze hun omgeving zo perfect kunnen nabootsen terwijl ze zelf kleurenblind zijn. Daar is nog nauwelijks iets van bekend, maar er zijn aanwijzingen dat er lichtgevoelige zintuigjes in de huid zitten.

Willy van Strien

Foto: Jonge zeekat. Magnef1 (Wikimedia Commons, Creative Commons CC BY-SA 3.0)

De giftige blauw-geringde octopus gebruikt zijn ringen, die zijn weggestopt in huidplooien, om roofvijanden te waarschuwen

Bronnen:
Woo, T., X. Liang, D.A. Evans, O. Fernandez, F. Kretschmer, S. Reiter & G. Laurent, 2023. The dynamics of pattern matching in camouflaging cuttlefish. Nature, 28 juni online. Doi: 10.1038/s41586-023-06259-2
Gilmore, R., R. Crook & J.L. Krans, 2016. Cephalopod camouflage: cells and organs of the skin. Nature Education 9(2): 1
Chiao, C-C., C. Chubb & R.T. Hanlon, 2015. A review of visual perception mechanisms that regulate rapid adaptive camouflage in cuttlefish. Journal of Comparative Physiology A 201: 933-945. Doi: 10.1007/s00359-015-0988-5
5

Woestijnmier maakt oriëntatiepunt

Nestheuvel geeft houvast in kale zoutvlakte

Woestijnmier Cataglyphis fortis heeft uitstekend navigatievermogen

Vaak is er bij een nest van de woestijnmier Cataglyphis fortis niets te zien dat foeragerende werksters kan helpen om het nest terug te vinden. In dat geval maken de mieren zelf een herkenningspunt, laten Marilia Freire en collega’s zien.

Een foerageertocht is een overlevingstocht voor de woestijnmier Cataglyphis fortis, die leeft in zoutpannen in Tunesië; zoutpannen zijn uitgestrekte kale vlakten waar ooit water was, maar waar alleen een zoutkorst is overgebleven. Werksters gaan er in hun eentje op uit om daar insecten en andere kleine beestjes te zoeken die aan de onbarmhartige woestijnhitte zijn bezweken. Als ze iets hebben gevonden, moeten ze met de buit tussen de kaken zo snel mogelijk terug het nest in, anders bezwijken ze zelf ook.

Maar de ingang van het ondergrondse nest is nauwelijks zichtbaar. Daarom maken de mieren zo nodig een oriëntatiepunt, ontdekten Marilia Freire en collega’s.

Navigatie

Het voedsel is schaars, en daarom moeten foeragerende woestijnmieren zich vaak ver van het nest begeven om iets te vinden. Ze wagen zich tot 350 meter. Omdat ze een uitstekend navigatievermogen hebben, komen ze meestal veilig terug.

Een werkster die op pad gaat, houdt met een inwendig zonnekompas voortdurend bij in welke richting ze loopt en met een soort stappenteller meet ze de afstand die ze in die richting aflegt. Als ze voedsel vindt, heeft ze meestal een kronkelig traject achter de rug, maar dankzij deze zogenoemde pad-integratie kan ze in een rechte lijn, dus via de kortst mogelijke route, teruglopen naar het nest. Althans: zo komt ze er bijna.

Als ze zich binnen een paar meter van het nest bevindt, heeft ze zichtbare herkenningspunten nodig om de exacte plaats van de nestingang te vinden, want pad-integratie werkt niet perfect. Hoe verder een mier van het nest is gekomen, des te meer onzekerheid er in de terugweg sluipt en des te groter de kans is dat ze te lang moet zoeken en bezwijkt. Voor het allerlaatste stukje gaat ze af op de nestgeur.

Alleen: midden in een zoutpan is helemaal niets te zien. Wat dan?

Oriëntatiepunt

als er geen herkenningspunten zijn, bouwt woestijnmier die zelf

Het was Freire en de andere onderzoekers opgevallen dat de woestijnmieren vaak een heuvel bij het nest opwerpen, en dat nestheuvels midden in een zoutpan hoger zijn dan aan de rand, waar wat struikjes staan. Een nestheuvel in het midden is gemiddeld 12 centimeter hoog (de hoogste die ze vonden was 30 centimeter), een nestheuvel aan de rand maar 5. Daarom vroegen ze zich af of de heuvels misschien als zichtbare herkenningspunten dienen voor werksters die terugkeren van een voedseltocht.

Om het antwoord te vinden, vingen ze een aantal mieren bij het nest en zetten ze op een paar meter afstand neer. Omdat de mieren niet zelf gelopen hadden, konden ze geen gebruik maken van pad-integratie. Maar ze werden geplaatst op afstanden waarbij ze zich door herkenningspunten naar het nest moeten laten leiden. De onderzoekers hadden bij een deel van de nesten de heuvels weggehaald, om te zien of dat uitmaakte.

Dat bleek het geval, vooral voor nesten midden in een zoutpan. Zonder heuvel slaagden mieren er niet in om rechtstreeks naar zo’n nest te lopen en vonden ze de ingang minder vaak terug. De heuvels dienen dus als herkenningspunten. Volgende vraag: maken mieren ze speciaal daarvoor? De heuvels zouden ook een andere hoofdfunctie kunnen hebben, bijvoorbeeld om de temperatuur in het nest te regelen.

Alleen als nodig

Maar de onderzoekers laten zien dat de woestijnmier wel degelijk zijn heuvels bouwt als oriëntatiepunten door proeven te doen waarbij ze bij zestien nesten in het midden van een zoutpan de heuvels weghaalden. Bij acht van die nesten zetten ze kunstmatige oriëntatiepunten neer, namelijk twee zwarte cilinders. Drie dagen later bleken de mieren bij sommige van die zestien nesten een nieuwe nestheuvel te hebben gebouwd. Dat was vooral bij nesten zonder kunstmatige oriëntatiepunten, en bij die nesten waren de heuvels groter.

Conclusie van dit alles: woestijnmieren bouwen heuvels bij hun nest als herkenningspunten voor foeragerende werksters. Maar ze doen die moeite alleen als er geen andere herkenningspunten te zien zijn, zoals bosjes of, in de proeven, zwarte cilinders.

Willy van Strien

Foto’s: ©Markus Knaden
Groot: Cataglyphis fortis
Klein: nestheuvel midden in zoutpan

Woestijnmieren kunnen zich ook op andere manieren aanpassen aan een leven in de hitte

Bronnen:
Freire, M., A. Bollig & M. Knaden, 2023. Absence of visual cues motivates desert ants to build their own landmarks. Current Biology 33: 1-4 (31 mei online). Doi: 10.1016/j.cub.2023.05.019
Steck, K., B.S. Hansson & M. Knaden, 2009. Smells like home: desert ants, Cataglyphis fortis, use olfactory landmarks to pinpoint the nest. Frontiers in Zoology 6: 5. Doi: 10.1186/1742-9994-6-5
Wittlinger, M., R. Wehner & H. Wolf, 2007. The desert ant odometer: a stride integrator that accounts for stride length and walking speed. The Journal of Experimental Biology 210: 198-207. Doi: 10.1242/jeb.02657
Wehner, R., 2003. Desert ant navigation: how miniature brains solve complex tasks. Journal of Comparative Physiology A 189: 579-588. Doi: 10.1007/s00359-003-0431-1

Evolutie van dagvlinders

Europa heeft minste soorten dagvlinders

tijgerblauwtjes, hier parend, zijn dagvlinders

De allereerste dagvlinders op aarde vlogen in wat nu Noord- of Midden-Amerika is. De rupsen aten er van bonenplanten, blijkt uit onderzoek van Akito Kawahara en talloze anderen.

Overal op aarde, behalve op Antarctica, komen dagvlinders voor. Tot nu toe was slecht bekend waar en wanneer ze zijn ontstaan en hoe hun evolutie is verlopen.

Akito Kawahara zocht het uit, samen met een enorm team. De onderzoekers analyseerden het dna van bijna 2300 dagvlindersoorten om een evolutionaire stamboom op te stellen. Ze verzamelden daarnaast veel kennis door museumcollecties te bestuderen en veldgidsen door te spitten in alle mogelijke talen. Zo konden ze achterhalen hoe dagvlinders zich over de aarde hebben verspreid en hoe ze leefden.

De diversiteit aan dagvlinders is behoorlijk; wereldwijd zijn er 19.000 soorten. Ze stammen af van nachtvlinders, oftewel motten. Op de evolutiestamboom ontspringt hun tak ongeveer 100 miljoen jaar geleden, toen er nog dinosauriërs leefden. Er waren al bloemplanten waarop volwassen vlinders nectar konden vinden en die ze, als tegenprestatie, bestoven.

Rupsen hebben veel voedsel nodig om te groeien, en de rupsen van de eerste vlinders knaagden waarschijnlijk aan bladeren van bonenplanten.

Pas laat in Europa

Het grote supercontinent Pangaea was in twee stukken uiteengevallen toen de eerste dagvlinders verschenen. Beide stukken, Gondwana (Afrika, Australië, Antarctica en Zuid-Amerika) en Laurasia (Noord-Amerika, Europa en Azië), waren aan het verbrokkelen en de delen dreven uit elkaar. India was oorspronkelijk onderdeel van Gondwana, maar kwam los en dreef naar Laurasia.

Volgens de studie zouden dagvlinders ontstaan in wat nu het westen is van Noord-Amerika of Midden-Amerika. Ze staken vrij snel de zee over naar Zuid-Amerika.

Zo’n 75 miljoen jaar geleden gingen dagvlinders vanuit Noord-Amerika ook naar Azië, via de Beringstraat, en van daaruit verspreidden ze zich over India en Australië, en later ook over Afrika. Over land lag de weg naar Europa open, maar het duurde lang voordat dagvlinders die kant op gingen. Waarom dagvlinders Europa zo lang links lieten liggen is een raadsel waar het onderzoek geen antwoord op heeft. Dagvlinders kwamen ‘pas’ 30 miljoen jaar geleden in Europa aan, en het gevolg is dat Europa weinig soorten telt vergeleken met andere continenten. In Nederland komen ongeveer 53 soorten dagvlinders voor.

Rupsendieet

De rupsen van de meeste soorten eten plantenblad en zijn vrij kieskeurig. Vlinders als aardbeivlinder, eikenpage, tijmblauwtje en koolwitje zijn genoemd naar de zogenoemde waardplanten van de rupsen.

De waardplanten van een soort behoren meestal tot één plantenfamilie: de koninginnenpage heeft wilde peen en andere schermbloemigen als waardplant, het oranjetipje is gebonden aan pinksterbloem en look-zonder-look (beide van de kruisbloemenfamilie), de keizersmantel aan verschillende viooltjes en het hooibeestje aan grassoorten.

Enkele dagvlinders hebben een alternatief rupsendieet ontwikkeld: de rupsen eten organisch afval of korstmossen, en sommige blauwtjes (familie Lycaenidae) zijn zelfs carnivoor en eten andere insecten.

Willy van Strien

Foto: Parende tijgerblauwtjes (Lampides boeticus). Atanu Bose Photography (Wikimedia Commons, Creative Commons CC BY-SA 4.0)

Zie ook: vorstelijk onthaal

Bron:
Kawahara, A.Y. et al., 2023. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. Nature Ecology and Evolution, 15 mei. Doi: 10.1038/s41559-023-02041-9

Kleverige jager

Roofwants Gorareduvius bedekt zich met hars

Gorareduvius roofwants gebruikt hars om prooien te vangen

Een Gorareduvius-roofwants gebruikt hars als middel om prooien te overmeesteren. Dat werkt prima, laten Fernando Soley en Marie Herberstein zien.

Roofwantsen jagen op insecten; ze grijpen prooien met hun voorpoten vast, prikken ze aan met hun steeksnuit en zuigen ze leeg. Insecten die zijn vastgepakt proberen natuurlijk te ontsnappen, maar sommige soorten roofwantsen maken dat moeilijk. Ze smeren zich namelijk in met plakkerige hars zodat prooien er niet zo snel vandoor kunnen gaan.

Een van die harsgebruikers is een verder nog nauwelijks bekende Gorareduvius-soort. Hij heeft succes met zijn plak-strategie, laten Fernando Soley en Marie Herberstein zien.

Nauwkeurig ingesmeerd

Gorareduvius leeft in West-Australië, waar hij zich ophoudt in pollen van een grassoort die hars produceert. De roofwants schraapt hars van het gras en smeert zich daar nauwkeurig mee in. Hij brengt het spul vooral aan op zijn voorpoten. Elk individu doet dat, een Gorareduvius-roofwants is altijd kleverig.

Soley en Herberstein deden experimenten waarbij ze deze roofwants in contact brachten met twee typen snel-bewegende prooien: mieren en vliegen. In sommige proeven mocht de roofwants zijn hars-uitrusting behouden, in andere gevallen haalden de onderzoekers die voorzichtig weg.

Met hars, zo bleek, vangt Gorareduvius succesvoller mieren en vliegen. De prooien kunnen nog wel weg komen, maar de hars houdt ze even tegen en dat geeft de roofwants meer kans om ze aan te prikken. Daardoor slagen vangpogingen van met hars uitgeruste roofwantsen vaker dan vangpogingen van schone roofwantsen.

Gereedschap

De groep roofwantsen (familie Reduviidae) telt ongeveer 7000 soorten. Een deel van die soorten smeert zich in met hars om makkelijker prooien te kunnen vangen, iets wat de onderzoekers als gebruik van gereedschap zien. De gewoonte is tenminste drie keer apart ontstaan.

Willy van Strien

Foto: Gorareduvius, een roofwants; op de voorpoten, boven de knik, zie je klompjes hars en waar de antennen ontspringen zie je de forse steeksnuit. ©Fernando Soley

Bronnen:
Soley, F.G. & M.E. Herberstein, 2023. Assassin bugs enhance prey capture with a sticky resin. Biology Letters 19: 20220608. Doi: 10.1098/rsbl.2022.0608
Zhang, J., C. Weirauch, G. Zhang & D. Forero, 2016. Molecular phylogeny of Harpactorinae and Bactrodinae uncovers complex evolution of sticky trap predation in assassin bugs (Heteroptera: Reduviidae). Cladistics 32: 538-554. Doi: 10.1111/cla.12140

« Oudere berichten Nieuwere berichten »

© 2025 Het was zo eenvoudig begonnen

Thema gemaakt door Anders NorenBoven ↑