Het was zo eenvoudig begonnen

Evolutie en Biodiversiteit

Pagina 9 van 42

Dure verdediging

Lieveheersbeestje kan niet alle vijanden tegelijk aan

Veelkleurig Aziatisch lieveheersbeestje kan zich niet verdedigen tegen alle vijanden tegelijk

Als een lieveheersbeestje zich regelmatig moet verweren tegen roofvijanden, is het minder goed in staat om ziekteverwekkers en parasieten te weerstaan, schrijven Michal Knapp en collega’s.

Bedreigde lieveheersbeestjes proberen te voorkomen dat ze worden opgegeten door een gele, stinkende en bitter smakende vloeistof te laten lekken uit hun pootgewrichten. Dat ontneemt hongerige insecten, hagedissen, vogels of kleine zoogdieren de lust om toe te happen. De vloeistof is hemolymfe, de insectenvariant van bloed. Je krijgt het ook te zien als je een lieveheersbeestje een klein beetje pest.
Maar doe dat liever niet. Want het ‘reflexbloeden’ gaat ten koste van het vermogen om andere vijanden te bestrijden, namelijk ziekteverwekkers en parasieten, melden Michal Knapp en collega’s.
Zij deden onderzoek aan het veelkleurig Aziatisch lieveheersbeestje, Harmonia axyridis. Dat leefde oorspronkelijk in Oost Azië, is ingevoerd in Europa en Noord Amerika en komt nu ook voor in Zuid Amerika en Afrika.

Kostbaar bloed

Hemolymfe is een ‘duur’ middel om vijanden weg te jagen. Het bevat voedingsstoffen, en er zitten bloedcellen, eiwitten en andere verbindingen in waarmee lieveheersbeestjes ziekteverwekkers en parasieten uitschakelen. Zo beschikt het veelkleurig Aziatisch lieveheersbeestje onder meer over de stof harmonine, dat een sterke antimicrobiële werking heeft. Elke bloeding betekent een verlies van deze waardevolle bestanddelen.

Om te zien hoe dat verlies uitpakt, lokte Knapp twee keer per week een reflexbloeding bij lieveheersbeestjes uit, drie weken lang. Tegen zijn verwachting in, had dat geen gevolgen voor de overlevingskans van de kevers en verloren ze er geen gewicht door.
Ook liet hij pas uitgekomen vrouwtjes gedurende een maand dagelijks refexbloeden, en constateerde dat hun voortplantingsvermogen onaangetast bleef. Ze legden in hun eerste levensmaand evenveel eitjes als vrouwtjes die met rust gelaten werden. Wel begonnen ze een paar dagen later met eitjes leggen, vooral als ze veel hemolymfe verloren. Dat hoeft echter geen probleem te zijn, want de kevers blijven maandenlang leven.

Inleveren

Maar bloed uitscheiden, als verdediging tegen roofvijanden, gaat wel ten koste van het afweervermogen tegen andere vijanden, zo bleek. Het gehalte aan bloedcellen en eiwitten in hemolymfe daalde na bloedingen. Het gehalte aan afweerstoffen als harmonine is niet gemeten, maar ander onderzoek wijst erop dat ook dat zal zijn afgenomen.

Hemolymfe van lieveheersbeestjes die gebloed hadden, bleek dan ook minder goed in staat te zijn om bacteriën te remmen. Waarschijnlijk hebben deze lieveheersbeestjes ook minder weerstand tegen parasieten, want daarbij spelen bloedcellen een rol. Maar dat is niet onderzocht.

Lieveheersbeestjes kunnen bestanddelen van de hemolymfe succesvol inzetten tegen alle typen vijanden – maar ze kunnen die dus niet allemaal tegelijk met volle kracht bestrijden. Als ze veelvuldig met hongerige belagers te maken hebben, moeten ze inleveren op hun weerstand tegen ziekteverwekkers en parasieten.

Willy van Strien

Foto: Veelkleurig Aziatisch lieveheersbeestje, Harmonia axyridis. Timku (via Flickr, Creative Commons CC BY-NC-SA 2.0)

Bron:
Knapp. M., M. Řeřicha & D. Židlická, 2020. Physiological costs of chemical defence: repeated reflex bleeding weakens the immune system and postpones reproduction in a ladybird beetle. Scientific Reports 10: 9266. Doi: 10.1038/s41598-020-66157-9

Geduld oefenen

Slang en kikker wachten tot de ander in actie komt

slang moet niet te snel aanvallen

Als slang en kikker elkaar ontmoeten, begint een uithoudingsspel. Degene die als eerste beweegt, neemt een risico, laten Nozomi Nishiumi en Akira Mori zien. Komt de slang in actie, dan ziet hij zijn prooi ontsnappen. Springt de kikker weg, dan wordt hij gegrepen.

kikker moet niet te snel wegspringenTerwijl de slang langzaam dichterbij komt glijden, blijft de kikker roerloos zitten. Ziet die kikker het gevaar niet? Of kan hij niet vluchten omdat hij bevroren is van angst? Geen van de twee, schrijven Nozomi Nishiumi en Akira Mori. Zo lang mogelijk blijven zitten is de beste strategie.
De biologen onderzochten in Japan hoe ontmoetingen verlopen tussen de toornslang Elaphe quadrivirgata en een van zijn prooien, de groene kikker Pelophylax nigromaculatus. De spanning loopt op, zo bleek in confrontatie-experimenten, omdat geen van beide dieren snel actie onderneemt. En daar hebben ze een goede reden voor.

Onderschept

De kikker zou natuurlijk kunnen vluchten door weg te springen als de slang dichterbij komt. Maar dan is hij in het nadeel. Als hij zich namelijk eenmaal heeft afgezet, kan hij zijn snelheid en richting niet meer veranderen. De slang zal onmiddellijk reageren en er waarschijnlijk in slagen om de kikker in zijn sprong te onderscheppen. De kikker kan dus maar het beste roerloos blijven zitten.
Maar ook de naderende slang moet geduld oefenen en geen uitval naar de kikker doen. Want als zijn kop eenmaal naar voren schiet, kan hij niet meer bijsturen. De kikker kan de aanval ontwijken door weg te springen, en de kans is groot dat hem dat lukt. De slang kan dan nog een poging doen om de kikker te grijpen, maar hij verliest tijd doordat hij eerst weer in de juiste positie moet gaan liggen.

En dus wachten beide partijen op initiatief van de ander. Wie dat als eerste opgeeft, neemt risico. Soms is het de kikker die als eerste tot actie overgaat en springt – met een grote kans dat hij gegrepen wordt. Andere keren gaat de slang opeens tot de aanval over – en zal de kikker waarschijnlijk ontkomen.

Kansloos

Maar als beide partijen dat volhouden, moet er uiteindelijk toch iets gebeuren. Op een goed moment moeten ze omschakelen van afwachten naar actie ondernemen. Als de slang de kikker tot op ongeveer zes centimeter is genaderd, kan die niet meer ontsnappen. De slang kan dan succesvol toeslaan. De kikker kan daar beter niet op wachten: net voordat de slang gevaarlijk dichtbij is en zal aanvallen, moet hij wegspringen. Dat kan verkeerd voor hem aflopen, maar ontsnapping is dan tenminste nog niet uitgesloten.

Het is een spel van geduld, maar ook een spel op leven en dood. In die zin zijn de proeven, waarin slang en kikker bij elkaar worden gezet, wat wreed, omdat sommige kikkers worden opgegeten. Maar, zo schrijven de onderzoekers in een ethische verantwoording, in de natuur is dit dagelijkse praktijk.

Willy van Strien

Foto’s:
Groot: Elaphe quadrivirgata. Ʃ64 (Wikimedia Commons, Creative Commons CC BY 3.0)
Klein: Pelophylax nigromaculatus. Alpsdake (Wikimedia Commons, Creative Commons, CC BY-SA 3.0; gespiegeld)

Bron:
Nishiumi, N. & A. Mori, 2020. A game of patience between predator and prey: waiting for opponent’s action determines successful capture or escape. Canadian Journal of Zoology 98: 351-357. Doi: 10.1139/cjz-2019-0164

Zandstrooier

Zeeschildpad maakt valse nesten op het strand

zeeschildpad maakt valse nesten

De eieren van een zeeschildpad, begraven op een zandstrand, zijn een smakelijke hap voor verschillende dieren. Schildpadmoeders brengen die vijanden in de war met een serie loknesten, denken Thomas Burns en collega’s.

Eieren leggen is een hele onderneming voor een zeeschildpad-vrouw. Vanuit zee hobbelt ze een zandstrand op, zoekt een geschikte plek, graaft een kuil, legt er tientallen eieren in en gooit de boel dicht. Je zou denken dat ze daarna weer zo snel mogelijk in zee duikt, waar ze zich makkelijker beweegt en veiliger is.
Maar dat doet ze nou net niet, schrijven Thomas Burns en collega’s. Ze strooit eerst nog zand rond de dichtgegooide nestholte. En dan begint ze een kronkelpad af te leggen over een groot gebied, steeds verder van het nest af, waarbij ze van tijd tot tijd stopt om nog eens zand rond te strooien. Pas als ze dat een op een aantal plekken heeft gedaan, verlaat ze het strand. Waarom die extra inspanning?

Smakelijk

Zeeschildpadden leggen hun eieren op tropische en subtropische stranden wereldwijd; ze kijken daarna niet meer naar hun legsel om. In het warme zand ontwikkelen de eieren zich, de jonge schildpadjes graven zich uit en kruipen naar zee. Het enige dat een moeder voor haar kroost kan doen, is zorgen dat ze de plaats van het nest, waar ze gegraven heeft, niet aan roofvijanden verraadt. De smakelijk eieren zijn namelijk in trek bij verschillende dieren, onder meer meeuwen, vossen, wasberen en wilde varkens.
Biologen dachten dat zeeschildpadden zand rond hun nest strooien om dat te vermommen of te camoufleren, zodat het niet opvalt. Maar dat kan niet kloppen, beargumenteren Burns en collega’s nadat ze grondig het gedrag bestudeerden van lederschildpad (Dermochelys coriacea) en ‘havikssnavel-zeeschildpad’ (Eretmochelys imbricata, hawksbill sea turtle in het Engels, geen Nederlandse naam). Want waarom strooien zeeschildpadden dan ook zand op stopplaatsen die ver van het nest af liggen?

Grote inspanning

De onderzoekers, die werkten op de eilanden Trinidad en Tobago, wijzen erop dat vrouwelijke zeeschildpadden zich volgens een vast patroon gedragen totdat ze klaar zijn met het nest. Daarna worden hun bewegingen onvoorspelbaar. Ze lopen ze een volstrekt willekeurige route over het strand, en nemen bij elke stopplaats een nieuwe richting.
Het onderzoek laat bovendien zien dat het zandstrooien een tijdrovende en vermoeiende bezigheid is. De havikssnavel steekt er evenveel energie in als in het uitgraven en dichtgooien van het nest, en voor de lederschildpad is het zelfs de meest inspannende bezigheid. De havikssnavel strooit vaak zand op meer dan tien plaatsen, de lederschildpad stopt soms ruim twintig keer. Ondanks de grote inspanning houden de schildpadden vol: van de laatste stopplaats maken ze even veel werk als van de eerste.

De conclusie van de onderzoekers: de zeeschildpadden maken een serie valse nesten. Een vijand die eieren zoekt zal daardoor meestal tevergeefs graven en veel tijd kwijt zijn. Echte nesten worden daardoor minder makkelijk gevonden, en zijn dus veiliger.

Willy van Strien

Foto: Eretmochelys imbricata. Gerwin Sturm (Wikimedia Commons, Creative Commons CC BY-SA 2.0)

Bronnen:
Burns, T.J., R.R. Thomson, R.A. McLaren, J. Rawlinson, E. McMillan, H. Davidson & M.W. Kennedy, 2020. Buried treasure—marine turtles do not ‘disguise’ or ‘camouflage’ their nests but avoid them and create a decoy trail. Royal Society Open Science 7: 200327. Doi: 10.1098/rsos.200327
Burns, T.J., H. Davidson & M.W. Kennedy, 2016. Large-scale investment in the excavation and ‘camouflaging’ phases by nesting leatherback turtles (Dermochelys coriacea). Canadian Journal of Zoology. Doi: 10.1139/cjz-2015-0240

Meeroepen voor de veiligheid

Mannetje boomkikker Smilisca sila is liever geen voorganger

mannetjes Smilisca sila roepen bijna tegelijkertijd

Zo gauw één mannetje van de boomkikker Smilisca sila roept, vallen andere mannetjes in de buurt vrijwel gelijktijdig in. Na een korte periode van herrie is het daarna weer lange tijd stil. Henry Legett en collega’s vonden een verklaring voor dit patroon.

Mannetjes van de boomkikker Smilisca sila staan voor een lastig dilemma. De kikker leeft in Midden-Amerika. Om zich voort te kunnen planten, moeten mannetjes een vrouwtje lokken door te roepen en dat doen ze in de avond, vanaf een plekje langs of boven een beek of kreek. Maar daarmee verraden ze hun aanwezigheid niet alleen aan vrouwtjes, maar ook aan hun natuurlijke vijanden, de franjelipvleermuis (Trachops cirrhosus) en muggen. De vijanden gaan op het geluid af.
Volgens Henry Legett en collega’s beperken de kikkermannetjes het risico door een gehoorsillusie te creëren voor hun vijanden.

Die illusie ontstaat door de manier waarop dieren, inclusief wijzelf, geluid verwerken. Als er met een korte tussentijd (het gaat om milliseconden) twee of meer identieke geluiden gemaakt worden door geluidsbronnen die dicht bij elkaar staan, horen we dat als één geluid. En dat is afkomstig van de bron die het geluid als eerste uitte. Zo negeren we weerkaatsingen die ontstaan in een gemeubileerde kamer of een bos, en nemen we geluiden helder waar. De voorrang die het eerste geluid krijgt heet het precedence effect.

Navolgers

franjelipvleermuis is gevoelig voor gehoorsillusieDankzij dit effect kunnen Smilisca sila-mannetjes die vrijwel gelijktijdig meeroepen met een ander, zich verstoppen voor de oren van hun vijanden. En dat werkt aardig, blijkt uit playbackexperimenten van de onderzoekers. Daarbij gebruikten ze twee speakers die vrijwel gelijktijdig de roep van een mannetje lieten horen; afwisselend was de ene of de andere speaker leidend. Ze keken achtereenvolgens hoe vleermuizen, muggen en kikkervrouwtjes reageerden.

Een mannetje dat een ander meteen volgt in zijn roep, loopt een wat kleiner risico dat een vleermuis hem pakt en trekt minder muggen aan dan de voorganger, maakten ze uit de resultaten op.
Navolging loont dus. Althans: voor zover het gaat om veiligheid. Maar hoe zit het met de voortplanting? Als ook vrouwtjes de navolgers moeilijker vinden, schieten die weinig op met de auditieve verstoppartij.

Maar dat blijkt mee te vallen. Het precedence effect is sterk bij andere kikkersoorten, zoals de tungarakikker (Engystomops pustulosus); die leeft in hetzelfde gebied en mannetjes roepen ook ’s nachts, maar niet gelijktijdig. Vergeleken met tungarakikkervrouwtjes is het effect bij vrouwtjes Smilisca sila beperkt. Ze kiezen minder vaak voor navolgers dan voor voorgangers, maar het verschil is klein. Ook navolgers krijgen damesbezoek.

Stilte

Rest de vraag waarom een boomkikkermannetje als eerste begint met roepen. Als voorganger heeft hij immers weinig extra aantrekkingskracht op vrouwtjes, maar loopt hij wel een grotere kans om opgegeten te worden.
Anderzijds: iemand moet het doen. Als alle mannetjes zouden blijven zwijgen, gebeurt er niets. Maar de onwil van mannetjes om de eerste te zijn verklaart wel dat er lange periode van stilte zijn, slechts af en toe onderbroken door een korte uitbarsting van geroep.

Willy van Strien

Foto’s:
Groot: Boomkikker Smilisca sila, Brian Gratwicke (Wikimedia Commons, Creative Commons CC BY 2.0)
Klein: Franjelipvleermuis, Karin Schneeberger alias Felineora (Wikimedia Commons, Creative Commons CC BY 3.0)

Bronnen:
Legett, H.D., C.T. Hemingway & X.E. Bernal, 2020. Prey exploits the auditory illusions of eavesdropping predators. The American Naturalist 195: 927-933. Doi: 10.1086/707719
Tuttle, M.D. & M.J. Ryan, 1982. The role of synchronized calling, ambient light, and ambient noise, in anti-bat-predator behavior of a treefrog. Behavioral Ecology and Sociobiology 11: 125-131. Doi: 10.1007/BF00300101

Zweefvliegen erin geluisd

Orchidee misleidt bestuivers, maar geeft wel een beloning

Cypripedium subtropicum bootst een bladluiskolonie na om bestuivers te lokken

De orchidee Cypripedium subtropicum lokt zweefvliegen door een bladluiskolonie met honingdauw te imiteren. De zweefvliegen komen in een val en als ze zich naar buiten wurmen, bestuiven ze de bloem, schrijven Hong Jiang en collega’s.

Bestuiving gaat normaal gesproken volgens het principe ‘voor wat hoort wat’. Bestuivers, zoals bijen, vlinders en vliegen, drinken nectar uit bloemen en met hun bezoeken brengen ze stuifmeel van de ene naar de andere bloem. Een traktatie in ruil voor stuifmeeltransport.
Maar niet alle planten spelen het spel eerlijk. Zo zijn er orchideeën die lijken op een vrouwtjeswesp. Daar komen mannetjeswespen op af die vruchteloos proberen te paren en al doende stuifmeel oppikken of achterlaten. Zulke bedrieglijke bloemen lokken insecten met valse beloften en maken gebruik van hun diensten zonder daar een beloning tegenover te stellen. Integendeel: een misleid mannetje verspilt zijn tijd.

Een andere vorm van bedrog beschrijven Hong Jiang en collega’s nu voor Cypripedium subtropicum, een orchidee van bergbossen in Zuidwest-China, Tibet en Noord-Vietnam die bestoven wordt door zweefvliegen. Deze plant belooft zijn bezoekers geen partner, maar voedsel. Het bijzondere is, dat misleide insecten wel een beloning krijgen – zij het een ongebruikelijke.

Bladluiskolonie

De bloemen van Cypripedium subtropicum zijn donkerbruin en hebben een vergrote onderlip die de vorm heeft van een buidel en bespikkeld is met witte plukjes haar. In de ogen van zweefvliegen, denken de onderzoekers, ziet het geheel eruit als een bladluiskolonie die is bedekt met honingdauw.  En daar zijn zweefvliegen gek op. Honingdauw is een zoet en kleverig goedje dat bladluizen uitscheiden omdat het plantensap dat ze opzuigen een overmaat aan suikers bevat. Proeven lieten zien dat zweefvliegen niet op de orchideeën afkomen als de witte plukjes haar verwijderd waren.
Maar de nabootsing gaat verder dan dat. De bloemen ruiken ook als een bladluiskolonie: ze verspreiden een geur die overeenkomt met de geur van alarmstoffen waarmee bladluizen elkaar waarschuwen als er gevaar dreigt.

En om het af te maken zijn de witte haarplukken voedzaam en rijk aan suiker – net als honingdauw. Cypripedium subtropicum bootst dus kleur, geur en smaak van een bladluiskolonie na.

Nauwe uitweg

Maar als zweefvliegen zich te goed doen aan het zoet, wordt duidelijk welke truc de orchidee toepast om zich te laten bestuiven. De onderlip heeft een opening in het midden. Al etend valt een zweefvlieg op een gegeven moment in het gat. Door de opening terug naar buiten krabbelen lukt niet, want de rand is lastig gebogen. Het beestje zit in de val.
De enige uitweg is een nauwe spleet boven aan de achterkant van de beurs waar de zweefvlieg zich doorheen kan wringen. Dan passeert hij eerst de stamper van de bloem en daarna de meeldraden. Als hij zich langs de meeldraden wurmt, komt er een dot stuifmeel op zijn rug terecht. En als hij bij een volgend bloembezoek opnieuw gevangen wordt en probeert te ontsnappen, laat hij dat op de stamper achter. Daarna pikt hij een nieuwe portie stuifmeel op.

Cypripedium subtropicum dwingt zweefvliegen dus om hem te bestuiven door ze in een val te vangen, maar ze krijgen er wel een lekker hapje voor terug. De belofte is in dit geval niet helemaal vals.

Willy van Strien

Foto: ©Hong Jiang

Een voorbeeld van orchideeën die wespen voor de gek houden

Bron:
Jiang, H., J-J. Kong, H-C. Chen, Z-Y. Xiang, W-P. Zhang, Z-D. Han, P-C. Liao & Y-i Lee, 2020. Cypripedium subtropicum (Orchidaceae) employs aphid colony mimicry to attract hoverfly (Syrphidae) pollinators. New Phytologist, 26 april online. Doi: 10.1111/nph.16623

Op het lijf geschreven

Humboldtinktvis laat zich lezen als een e-reader

Humboldt inktvis showt kleurpatroon met achtergrondverlichting

Visueel communiceren in de duistere diepzee: de humboldtinktvis is ertoe in staat, laten Benjamin Burford en Bruce Robison zien. De dieren creëren kleurpatronen met achtergrondverlichting.

De humboldtinktvis,  Dosidicus gigas, is sociaal: dieren vormen groepen en jagen gezamenlijk, onder meer op lantaarnvisjes. Die gezamenlijke jacht vereist een goede afstemming, zodat de hele groep dezelfde kant op zwemt en tegelijk afremt om prooi te vangen. En dat lukt prima zonder dat de dieren op elkaar botsen en zonder dat ze elkaar aanvallen, namen Ben Burford en Bruce Robison waar. Kennelijk is de communicatie op orde.

Donker

Dat is bijzonder, want de pijlinktvis leeft meestal in het donker. Hij brengt de dag door op een diepte van honderden meters en komt alleen ’s nachts wat meer aan de oppervlakte. Dus hoe communiceren de dieren dan, vroegen de onderzoekers zich af.
Inktvissen wisselen boodschappen uit met kleurpatronen op het lichaam. Ze hebben in hun huid namelijk chromatoforen, elastische zakjes met pigment die ze naar believen kunnen openen. Bekend was al dat humboldtinktvissen chromatoforen in één kleur hebben, namelijk roodbruin. Daarmee kunnen ze wit-rode patronen maken. Maar hoe kunnen ze die patronen in het donker aan elkaar laten zien?

Door achtergrondverlichting in te schakelen, zo lijkt het.

Opgloeiend lichaam

Burford en Robison bestudeerden het gedrag van de dieren door ze overdag op grote diepte te filmen met een camera die was bevestigd aan een op afstand bestuurbare onderwaterrobot en het beeldmateriaal te bekijken.
De dieren hebben, behalve chromatoforen, ook zogenoemde lichtorganen, met cellen die licht kunnen produceren; dat heet bioluminescentie. Veel diepzeebewoners hebben lichtorganen in de huid, meestal op bepaalde plaatsen. Ze brengen er boodschappen mee over door de lichtintensiteit te veranderen. Ze laten bijvoorbeeld met een lichtpatroon zien van welke soort ze zijn, baltsen met een lichtshow, flitsen op om een ander te laten schrikken of lokken prooidieren met een lampje.

De humboldtinktvis zet het licht op een andere manier in. Zijn lichtorganen liggen niet in de huid, maar eronder. En ze bevinden zich niet op bepaalde plaatsen, maar zijn verspreid over het hele lichaam. Door zijn hele lijf groengeel te laten opgloeien, denken Burford en Robison, creëert de humboldtinktvis een achtergrondverlichting die het wit-rode patroon op de huid zichtbaar maakt. Het is het principe van een e-reader.

De humboldtinktvis ontcijferen

Deze pijlinktvis heeft een heel repertoire aan patronen, was al bekend. Hij kan flitsen en flakkeren. Hij kan de vinnen aan het eind van de mantel laten afsteken tegen mantel, kop en armen, of de rand van de vinnen tegen de rest; hij kan strepen maken langs de zijkant van de mantel of op de armen, of een vlek neerzetten tussen de ogen. De inktvissen tonen bepaalde patronen alleen als ze in een groep aan het jagen zijn, en sommige patronen komen in een vaste volgorde. Het biedt mogelijkheden genoeg voor complexe, hoogwaardige communicatie.
De kunst is nu om die taal te ontcijferen. De gebruikte camera was te weinig lichtgevoelig om de patronen in het duister goed te kunnen zien, en het is nog onbekend hoe de dieren op elkaars boodschappen reageren.

Willy van Strien

Foto: Een humboldtinktvis in het licht van een op afstand bestuurbare onderwaterrobot op 300 meter diepte in de Baai van Monterey (Californië). ©2010 MBARI

De onderzoekers vertellen over hun werk op YouTube

Zie ook: hoe paart de humboldtinktvis?

Bronnen:
Burford, B.P. & B.H. Robison, 2020. Bioluminescent backlighting illuminates the complex visual signals of a social squid in the deep sea. Proceedings of the National Academy of Sciences 117: 8524-8531. Doi: 10.1073/pnas.1920875117
Trueblood, L.A., S. Zylinski, B.H. Robison & B.A. Seibel, 2015. An ethogram of the Humboldt squid Dosidicus gigas Orbigny (1835) as observed from remotely operated vehicles. Behaviour 152: 1911-1932. Doi: 10.1163/1568539X-00003324
Rosen, H., W. Gilly, L. Bell, K. Abernathy & G. Marshall, 2015. Chromogenic behaviors of the Humboldt squid (Dosidicus gigas) studied in situ with an animal-borne video package. The Journal of Experimental Biology 218: 265-275. Doi:10.1242/jeb.114157
Benoit-Bird, K.J. & W.F. Gilly, 2012. Coordinated nocturnal behavior of foraging jumbo squid Dosidicus gigas. Marine Ecology Progress Series 455: 211-228. Doi: 10.3354/meps09664

Vereende krachten tegen broedparasiet

Mangrovezanger waarschuwt, epauletspreeuw valt aan

Epauletspreeuw luistert alarmroep van mangrovezanger af

De mangrovezanger laat een speciale roep horen als er een broedparasiet in de buurt is. De epauletspreeuw pikt het signaal op en valt aan, schrijven Shelby Lawson en collega’s. Zo beschermen de vogels samen hun nesten.

Epauletspreeuw wordt geparasiteerd door bruinkopkoevogel, een broedparasietEen vogelnest met eieren of jongen is kwetsbaar. Een van de gevaren is dat een vreemde vogel er een ei in legt en de ouders opscheept met een pleegjong, zoals de koekoek doet. Dat risico loopt de epauletspreeuw, die broedt in natte gebieden in Noord- en Midden-Amerika. Hier is de bruinkopkoevogel de ‘koekoek’, oftewel de broedparasiet.
Hoewel een jonge koevogel niet, zoals een koekoeksjong, zijn pleegbroertjes en -zusjes uit het nest gooit, zijn die toch slecht af. Het vreemde jong eist zoveel aandacht dat de rechtmatige jongen te kort komen en verhongeren of in een slechte conditie uitvliegen.
De epauletspreeuw moet de koevogel dus buiten zijn nest zien te houden. Daarbij profiteert hij van de waakzaamheid van de mangrovezanger, een andere zangvogel die de koevogel op bezoek kan krijgen, laten Shelby Lawson en collega’s zien. De mangrovezanger op zijn beurt profiteert van de agressie van de epauletspreeuw.

Verdediging

Mangrovezanger waarschuwt voor broedparasietAls mangrovezangers een bruinkopkoevogel ontdekken, laten ze een specifiek alarmsignaal horen, een ‘siet’-klank. Alle vrouwtjes die dat horen reageren adequaat: ze gaan onmiddellijk naar hun nest (als ze daar al niet waren), herhalen de ‘siet’ en drukken zich stevig op hun legsel. Zo heeft een koevogel geen toegang.
Mangrovezangers laten de ‘siet’-klank alleen horen als de broedparasiet in de buurt is en alleen in de broedperiode. Voor roofvijanden hebben ze een ander signaal, en als dat klinkt hippen vrouwtjes rond en zijn ze alert, maar gaan ze niet terug naar het nest. De combinatie van het speciale waarschuwingssignaal voor broedparasiet en de adequate reactie van vrouwtjes is uniek.

De onderzoekers vroegen zich af of epauletspreeuwen dat specifieke signaal afluisteren en er hun voordeel mee doen. Ze speelden verschillende opgenomen geluiden af bij nesten van epauletspreeuwen en keken hoe die daarop reageerden.
Zowel spreeuwen-mannetjes als -vrouwtjes werden agressief als ze de ‘siet’ van mangrovezangers hoorden en vielen de speaker aan. Ze reageerden even opgewonden als op het ‘gebabbel’ van bruinkopkoevogels. En ook de roep van een blauwe gaai, een roofvijand die nesten plundert, wekte die agressie op. De reactie op de ‘siet’-klank is blijkbaar een algemene verdedigingsactie tegen verschillende gevaren die een nest bedreigen. De zang van een onschuldige zangvogel negeerden ze.
Overigens lokte het gebabbel van andere epauletspreeuwen de verdedigingsreactie het allersterkst uit. De vogels beschouwen soortgenoten die hun territorium binnendringen kennelijk als het grootste gevaar.

Samen

Het waarschuwingssignaal van mangrovezangers voor broedparasieten wordt dus opgepikt door epauletspreeuwen, die op het gevaar af gaan. Daar profiteren mangrovezangers weer van. Uit eerder onderzoek was al gebleken dat hun nesten minder risico lopen op misbruik door een koevogel als ze in de buurt van epauletspreeuwen broeden. Epauletspreeuw en mangrovezanger nestelen vaak in elkaars nabijheid; samen kunnen ze zich tegen de broedparasiet weren.

Tot nu toe lijkt de epauletspreeuw de enige vogelsoort te zijn die de waarschuwing van mangrovezangers voor broedparasieten verstaat en erop reageert.

Willy van Strien

Foto’s:
Groot: Epauletspreeuw. Brian Gratwicke. (Wikimedia Commons, Creative Commons CC BY 2.0)
Klein boven: Bruinkopkoevogel vrouwtje. Ryan Hodnett (Wikimedia Commons, Creative Commons CC BY-SA 4.0)
Klein onder: Mangrovezanger mannetje. Mykola Swarnyk (Wikimedia Commons, Creative Commons CC BY-SA 3.0)

De onderzoekers lichten hun werk toe op YouTube

Bronnen:
Lawson, S.L., J.K. Enos, N.C. Mendes, S.A. Gill & M.E. Hauber, 2020. Heterospecific eavesdropping on an anti-parasitic referential alarm call. Communications Biology 3: 143 . Doi: 10.1038/s42003-020-0875-7
Gill, S.A. & S.G. Sealy, 2004. Functional reference in an alarm signal given during nest defence: seet calls of yellow warblers denote brood-parasitic brown-headed cowbirds. Behavioral Ecology and Sociobiology 5671-80. Doi: 10.1007/s00265-003-0736-7
Clark, K.L. & R.J Robertson, 1979. Spatial and temporal multi-species nesting aggregations in birds as anti-parasite and anti-predator defenses. Behavioral Ecology and Sociobiology 5: 359-371. Doi: 10.1007/BF00292524

Stuifmeel op vleugels

Borstelvorm van poederkwast is aanpassing aan vlinderbezoek

poederkwast wordt bestoven door grote vlinders

Op vlindervleugels reist het stuifmeel van de poederkwast, Scadoxus multiflorus, van de ene naar de andere plant, zoals Hannah Butler en Steve Johnson laten zien.

Net als bijen zijn ook vlinders bloembestuivers. Ze komen naar bloemen om nectar te drinken, pikken daarbij stuifmeel op en laten bij een bezoek aan een volgende bloem wat stuifmeelkorrels op de stamper achter. Bloemen die door vlinders worden bestoven, zijn vaak rood of oranje, want die kleuren trekken vlinders aan. Bovendien hebben ze een bouw die geschikt is voor vlinderbestuiving, schrijven Hannah Butler en Steve Johnson.
Bekend was al het ‘presenteerbladmodel’, waarbij bloemblaadjes een platform vormen waar een vlinder op kan zitten als hij zijn roltong in een bloem steekt. Stuifmeelkorrels plakken dan aan de roltong en de kop van de vlinder. Nu beschrijven Butler en Johnson een andere bloemvorm met een andere wijze van stuifmeeloverdracht: het ‘borstelmodel’.

Al fladderend

Een plant met borstelmodel is Scadoxus multiflorus uit Afrika, bij ons bekend als kamerplant met de naam poederkwast. De meeldraden en stampers zijn langer dan de bloemblaadjes, en doordat de bloemen dicht op elkaar op een bolvormig scherm staan, steken meeldraden en stampers van verschillende bloemen door elkaar heen – vandaar de naam. De plant kan zichzelf niet bevruchten; er moet stuifmeel van een andere plant op de bloemen komen willen zich zaden kunnen ontwikkelen.
En daar zorgen vlinders voor. De planten worden bezocht door grote dagvlinders. Een veel geziene gast is de page Papilio dardanus, vooral het mannetje. Hoe brengt hij stuifmeel van de ene naar de andere plant?

De vlinder fladdert langs de bloem om te kijken of er wat te halen valt. Daarbij raken zijn vleugels vele meeldraden en stampers. Ook als hij nectar drinkt, blijft hij erbij fladderen. De platte pollenkorrels van de meeldraden die hij raakt blijven hangen tussen de schubben aan de onderkant van de vleugels, laten macrofoto’s zien. En van de korrels die een vlinder bij zich heeft valt een deel op de stampers; de vlinder kan bij één bezoek meerdere bloemen bestuiven, zelfs als hij geen nectar drinkt.

De borstelvormige bloemenpluim van de poederkwast is dus een specialisatie voor vlindervleugelbestuiving. De plant behoort tot de narcisfamilie. Ook andere rode bloemen van die plantenfamilie hebben een borstelmodel en geven hun stuifmeel aan vlindervleugels mee, zo blijkt.

Willy van Strien

Foto: De page Papilio dardanus (mannetje) op poederkwast Scadoxus multiflorus. ©Steven D. Johnson

Bron:
Butler, H.C. & S.D. Johnson, 2020. Butterfly-wing pollination in Scadoxus and other South African Amaryllidaceae. Botanical Journal of the Linnean Society, 12 maart online. Doi: 10.1093/botlinnean/boaa016

Mangrovekwal steekt op afstand

Slijm zit stampvol bolletjes met netelcellen

Mangrovekwal stoot slijm uit met stekende celbolletjes

Het water rondom mangrovekwallen is gevaarlijk voor kleine beestjes en prikkelend voor snorkelaars. Beweeglijke celstructuren, afgescheiden door de kwallen, zijn daar verantwoordelijk voor, laten Cheryl Ames en collega’s zien.

De mangrovekwal Cassiopea xamachana zwemt niet rond, zoals kwallen normaal gesproken doen, maar strijkt ondersteboven neer op modderige bodems van mangrovebossen, zeegrasvelden of ondiepe baaien, zijn acht mondarmen met uitbundig vertakte flappen omhoog. De kwal komt voor in warme gedeelten van de westelijke Atlantische Oceaan, de Caribische Zee en de Golf van Mexico, vaak in grote groepen.
Het liggende bestaan is niet het enige ongewone van dit dier. Apart is ook dat in zijn geleiachtige lijf eencellige algachtige organismen leven, de zogenoemde zoöxanthellen. Net als planten maken die koolhydraten en zuurstof uit koolstofdioxide en water, met behulp van energie uit zonlicht. Een deel van de koolhydraten staan ze af aan de kwal, in ruil voor hun comfortabele en veilige onderkomen.

En dan is er nog een derde eigenaardigheid: water rondom een groep mangrovekwallen ‘steekt’, zoals snorkelaars weten. Cheryl Ames en collega’s ontdekten hoe de mangrovekwal dat voor elkaar krijgt.

Beweeglijke celbolletjes

De koolhydraten die de mangrovekwal aan zijn inwonende micro-organismen ontleent, zijn de belangrijkste bron van energie. Maar de kwal heeft ook eiwitten nodig. Daarom vult hij zijn dieet aan met dierlijk voedsel.
Om prooien te vangen hebben kwallen netelcellen. Deze cellen dragen netelblaasjes, een soort van harpoentjes, en zijn voorzien van een gifmengsel; de harpoentjes kunnen kleine beestjes verlammen of doden. De steken schrikken bovendien bedreigers af.
De mangrovekwal heeft netelcellen op zijn mondarmen. Het dier ligt te pulseren en veroorzaakt daarmee bewegingen in het water die prooidiertjes naar de armen drijft, waar ze gevangen worden. Maar hij steekt, in tegenstelling tot andere kwallen, ook op afstand. Hoe doet hij dat?

Als er prooidiertjes zijn of als de kwal verstoord wordt, zo blijkt uit het huidige onderzoek, stoot hij grote hoeveelheden slijm uit. Daarin zitten microscopisch kleine bolletjes met een bobbelig oppervlak. Ze hebben aan de buitenkant een laag cellen, namelijk netelcellen en opperhuidcellen met zweepharen. De inhoud is geleiachtig als de kwal zelf; vaak zitten er zoöxanthellen in.

Dodelijk

De celbolletjes, die de onderzoekers cassiosomen hebben genoemd, worden in grote hoeveelheden aangemaakt op de armen van de kwal. Bij verstoring begint hij ze na vijf minuten uit te stoten in een wolk slijm en gaat daar uren mee door. Dankzij de zweepharen zijn de bolletjes beweeglijk. Ze zwemmen een kwartier lang rond in het slijm en zakken dan naar beneden; daar blijven ze nog dagenlang kruipen en draaien. Ze worden geleidelijk gladder en kleiner en vallen uiteindelijk uit elkaar.

De cassiosomen zijn in staat prooidiertjes te doden, blijkt uit proeven in het lab. Een pekelkreeftje bijvoorbeeld is vaak op slag dood als hij met zo’n bolletje in aanraking komt.

Terwijl ze met hun werk bezig waren, ondervonden de onderzoekers zelf dat het water in de proefbakken stak.

Van alle eigenaardigheden die de mangrovekwal heeft, is dit misschien wel de vreemdste: stukjes kwal die los van het eigenlijke lichaam dagenlang in leven blijven en de kwal helpen prooien te vangen en vijanden af te schrikken. De onderzoekers weten inmiddels dat een handvol nauw verwante soorten kwallen vergelijkbare kleine ‘granaten’ afscheidt.
De celbolletjes in het slijm van de mangrovekwal waren al eerder gezien, aan het begin van de twintigste eeuw, maar men dacht dat het parasieten waren. Dat het kwalweefsel was had toen niemand kunnen denken.

Willy van Strien

Foto: Bjoertvedt (Wikimedia Commons, Creative Commons CC BY-SA 4.0)

Bron:
Ames, C.L., A.M.L. Klompen, K. Badhiwala, K. Muffett, A.J. Reft, M. Kumar, J.D. Janssen, J.N. Schultzhaus, L.D. Field, M.E. Muroski, N. Bezio, J.T. Robinson, D.H. Leary, P. Cartwright, A.G. Collins & G.J. Vora, 2020. Cassiosomes are stinging-cell structures in the mucus of the upside-down jellyfish Cassiopea xamachana. Communications Biology 3: 67. Doi: 10.1038/s42003-020-0777-8

Plekje vrij voor lekkernij

Zeekat hoeft overdag geen krab als er ’s avonds garnaal zal zijn

Zeekat eet overdag minder als er 's avonds garnaal zal zijn

De gewone zeekat heeft een duidelijke voedselvoorkeur: garnalen. Als hij die ’s avonds zal krijgen, laat hij daar overdag een plekje voor open, laten Pauline Billard en collega’s zien.

De inktvis Sepia officinalis, de gewone zeekat die onder meer langs de kust van Nederland en België voorkomt, eet van alles, maar hij heeft niet alles even graag. Garnalen zijn het lievelingseten. Hij vindt ze zo smakelijk, dat hij een maaltje krab laat staan als hij ’s avonds op garnaal kan rekenen, blijkt uit onderzoek van Pauline Billard en collega’s.

In het lab deden de onderzoekers twee experimenten. Eerst boden ze inktvissen, die ze in aparte bakken hielden, overdag krabbetjes aan. Een deel van de inktvissen kreeg elke avond ook nog garnaal, de andere inktvissen kregen dat soms wel, soms niet, op onvoorspelbare wijze.
De zeekatten die geheid elke avond garnaal kregen, gingen er toe over om minder van de overdag aangeboden krab te nemen en zo een plekje vrij te houden voor het favoriete voedsel. De inktvissen die niet zeker waren van de lekkernij ’s avonds, bleven de krab die ze overdag kregen gewoon opeten. Binnen is binnen.
Nadat het aanbod van de groepen werd verwisseld – dus inktvissen die eerst elke avond garnaal kregen, kregen dat nu onregelmatig en omgekeerd – pasten de dieren hun gedrag aan.

Honger

Toen was het tijd voor het tweede, ingewikkelder experiment. De inktvissen kregen weer overdag krab voorgeschoteld, maar deze keer kregen ze om de andere avond garnaal. Daar moesten ze even aan wennen, maar toen wisten ze ook daar op in te spelen. Ze aten overdag krab als ze de avond ervoor garnaal op hadden, dus de komende avond geen garnaal hoefden te verwachten. Omgekeerd, als ze de vorige avond geen garnaal gezien hadden, aten ze niet veel krab overdag, in afwachting van garnaal de komende avond.

Het gedrag van de dieren kan niet door een lege maag verklaard worden, want dan zouden ze juist wel krab moeten eten als ze de vorige avond geen garnaal op hadden en dus hongeriger waren.

Willy van Strien

Foto: Gewone zeekat. Amada44 (Wikimedia Commons, Creative Commons CC BY-SA 3.0)

Bron:
Billard, P., A.K. Schnell, N.S. Clayton & C. Jozet-Alves, 2020. Cuttlefish show flexible and future-dependent foraging cognition. Biology Letters 16: 20190743. Doi: 10.1098/rsbl.2019.0743

« Oudere berichten Nieuwere berichten »

© 2024 Het was zo eenvoudig begonnen

Thema gemaakt door Anders NorenBoven ↑